Part 0. Mathematics Foundations

A. Summations

B. Sets, Etc.



A. Summations
Summation formulas and properties:

Given a sequence ai,as, ..., a, of numbers, the finite sum

a1 + as + ... + a,, where n is a nonnegative integer, can be written
> 1 ak. The infinite sum a1 + ag + ... can be written Y -, ax,
which is interpreted to mean lim, oo Y, Gk

Linearity: > . (car +br) =c¢> ,_, +> 1_, bk, where cis a
constant.

The linearity property can be exploited to manipulate summations

incorporating asymptotic notation:

> k1 OUf (k) = Oy f(R)).



Arithmetic series: Y ,_, k=1+4+2+..+n=1in(n+1) = 6O(n?).

Sum of squares: Y ,_, k* = ”(”+1)6(2n+1)

. n . n? n+1 2
Sum of cubes: >, _ k> = %,




Geometric series: for real number x # 1, the summation
S o =1+z+2%+2%..+ 2" is a geometric or exponential

series and has the value:

Zkox =

When the summation is infinite and 0 < |z| < 1,
we have the infinite decreasing geometric series:

kE_ 1
D k0T =T



Harmonic series: for positive integers n, the nth harmonic

number 1s:
1 1 1 1
H = 1+—4+—4+—-—+.. +—
n +2+3+4+ +n
- k



Telescoping series:

n
for any sequence ag, a1, ..., an, D1 (A — ax—1) = an — ao.

Similarly, Zz;é(a,k — Ak11) = Qg — Qp.

For example,

n—1 n—1
1 1 1
S T - LG
— k(k + 1) — kE+1
1
= ] - —
n



Bounding summations
Mathematical induction:

For example, to prove that the arithmetic series

S k=1in(n+1).

Step 1: When n =1, left = 1, right = 2 1 %2 =1.

Step 2: Make inductive assumption that it holds for n. Now we
prove that it holds for n+1. We have

n+1 n
Y= > k+(n+1) (6)
k=1 k=1
— %n(n—l— D)+ (n+1) (7)
= (4D +2) (8)



Mathematical induction can be used to show a bound as well. In
this case, you do not need to guess the exact value of a summation.
For example, to prove the geometric series ZZ’:O 3% < ¢3™ for some
constant c. Proof:

Step 1: For the initial condition n = 0, 2220 3F=1<ec.

Step 2: Assume that the conclusion holds for n, which means

S o 3% < ¢3™. Now let’s prove that it also holds for n + 1.

n+1 n
d o3k =) 343t (9)
k=0 k=0
= 3" 3"t (10)
1 1 n+1
< 3t (12)

1

as long as (% +2)<1,¢c> % Thus, we conclude that

S o 3F < 3™



Bounding the terms:

Sometimes, we can get a good upper bound on a series by bounding

each term of the series. For examples: >, k<> 7' n=n”

In general, for a series Zzzl a” . if we let apmqe = MAT1<k<n0k,
then > 1, a® < namaz-

However, bounding each term by the largest term is a weak method

when the series can in fact be bounded by a geometric series.



Give the series: ZZ’:O ar. Suppose a1 < rag for all k > 0 and r is
a constant, and 0 < r < 1. So

ar < rap_1 < rlap_o < r3ap_3 < .. <rkFa. Thus,

z’”’: Qg i CLOTk (13)
k=0 k=0

= &oirk (14)

k=0
1
1 —7r

IA

= Qg (15)
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To apply the above method to this example: >, ﬁk We rewrite

itas Y oo, fktll So ag = 3. The ratio r is
k42
N (k+2)/3 (16)
(k+1)/3k+1
1k+2
VTS 17
2
< 3 (18)
for all £ > 0. Thus, we have
 k k41
Z % = D e (19)
—1 k=0
1 1
= - 5 (20)
31— 2
- 1 (21)

11



Splitting summation: a way to obtain bounds on a difficult
summation by partitioning the range of the index and then to
bound each of the resulting series. For examples,

n n/2 n
Yok o= >kt Y. (22)
k=1 k=1  k=n/2+1
n/2 n
> Yo+ Y g (23)
k=1 k=n/2+1

— (n/2)’ (24)
— Q) (25)
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For any constant kg, we have

ko—1

Zak—Z&k—l—Z&k = @(1)—|—Z&k (26)

k=ko k=ko

. 2 . .
Now compute the summation > .-, . The ratio of consecutive

terms 1s
(k4 1)2/2k+1 (k +1)?
k2 /2K T2k (27)

k2 + 2k + 1

- 2% (28)

_ 1 + 1 + L (29)

2k 2k2
8

< = 30

< 5 (30)
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if £k > 3. Thus, the summation can be split into

ookz 2 k2 ookz
2oor = Xt

k=0 k=3
2 e
9N 8.,
< = E —
k=0 k=3

IA
& (\V)
_i_
Q0| ©
]
O | 00
N——"
&

(31)

(32)

(33)

(34)



B. Sets, etc.

A set is a collection of distinguishable objects, called its members

or elements.

Intersection: ANB ={x:x € A and z € B}
Union: AUB={z:z€ Aorz € B}
Difference: A— B={x:x € A and x ¢ B}
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Empty set laws: AN0 =0, Aud=A
Idempotency laws: ANA=A4, AUA=A
Commutative laws: ANB=BNA, AUB=BUA
Associative laws: AN(BNC)=(ANB)NC,
AU(BUC)=(AuB)UC

Distributive laws: AN (BUC)=(ANB)U(ANC),
Au(BNC)=(AuB)N(AuC)

Absorption laws: AN(AUB)=A, AU(ANB)=A
DeMorgan’s laws: A — (BNC)=(A—-—B)U((A-C),
A—(BUC)=(A—B)Nn(A-C)
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Complement: consider all the sets are subsets of some larger set
U called the Universe, the complement of set A is U — A.

We have AN A=

AUA=U

A=A

DeMorgan’s law can be rewritten with complements for any two
sets B,C' C U, we have BNC =BUC and BUC =BnNC
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Cardinality: the number of elements in a set;

Same cardinality: two sets have the same cardinality if their
elements can be put into a one-to-one correspondence;

Finite set: the cardinality of the set is a natural number.
Otherwise, it is infinite;

Countably infinite set: An infinite set, and it can be put into a
one-to-one correspondence with the natural numbers N. Otherwise,

it is uncountable.
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n-set: A finite set of n elements;

Singleton: A 1-set;

k-subset: A subset of k£ elements of a set;

Power set: The set of all subsets of a set, i.e.,

2twb} = 0, {a},{b},{a,b};

Ordered pair: An ordered pair of two elements a and b is denoted
(a, b);

Cartesian product of two sets: the set of all ordered pairs, i.e.,
Ax B=A{(a,b):a€ Aand b€ B}, |A x B| = |A| x |Bj;
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Binary relation R: a subset of the Cartesian product A x B.
Properties:

(1) Reflexive: if a R a for all a € A. E.g, = and <, ...

(2) Symmetric: if a R b implies b R a. E.g. =.

(3) Transitive: if a R b and b R ¢ implies a R c. E.g. =, <, <, ...
(4) Antisymmetric: a R b and b R a implies a = 0. E.g. =.
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