
Part I. Foundations

Chapter 1. The role of algorithms in computing

Chapter 2. Getting started

Chapter 3. Growth of functions

Chapter 4. Recurrences

Chapter 5. Probabilistic analysis and randomized algorithms

1

Chapter 1. The role of algorithms in computing

Algorithm: a well-defined procedure that takes an input and
produces an output.

Input (x) → [A] → output (y)

Example: Algorithm MAX;
Input: List x = {a1, · · · , an};

Body: a series of instructions;
Output: y, the maximum of a1, · · · , an.

2

An algorithm specifies a finite process to compute a function or a
relation.

e.g., algorithm MAX computes the following function:
fmax(x) = y, where y ≥ a,∀a ∈ x.

Questions:

Can an algorithm produce non-unique answers, in other word,
different runs of the algorithm produce different results y for the
same input x?

What are deterministic, non-deterministic, probabilistic, and
parallel algorithms?

3

• Deterministic algorithms: Given the same input, will always produce
the same output.

• Non-deterministic algorithms: May produce different outputs for the
same input on different runs.

• Probabilistic algorithms: Make use of randomness or probability in its
operation.

• Parallel algorithms: Execute multiple computational tasks in parallel,
rather than sequentially.

Computational problems

There are many computational problems in the areas of electrical
engineering, biological sciences, manufacturing, internet
programming etc.

(1) search problems: for which algorithms are required to produce
an output y that may be in a complex form.

A search problem corresponds to a general function f(x) = y.

(2) decision problems: for which algorithms output ”yes”/”no”.

A decision problem corresponds to a predicate g(x) = y ∈ {0, 1}.

4

Traveling Salesman Problem TSP – search problem
Input: a weighted undirected graph G = (V,E);
Output: a simple cycle containing all vertices in V (Hamiltonian
cycle) such that the total cycle weight is the minimum.

A related decision problem:
Input: a weighted undirected graph G = (V,E) and a number k;
Output: ”yes” if and only there is a weight at most k Hamiltonian
cycle (a cycle that visit each vertex exactly once and returns to the
starting vertex) in G.

Claim: The decision problem is not necessarily “easier” than the
original search problem.

Actually any “fast” algorithm for the decision problem can be used
to quickly construct a minimum Hamiltonian cycle for the search
problem. How?

5

Formally, assume that there is an algorithm A solving the decision
problem:

〈G, k〉 → [A]→ “yes′′/“no′′

The following process produces a minimum Hamiltonian cycle for
any given graph G.

step 1. decide the minimum weight k0 for G (how?);
step 2. select an arbitrary unmarked edge e = {u, v};
step 3. let G′ = (V,E − {e}), run A on 〈G′, k0〉
step 4. if the answer is “yes”, remove e from G;

otherwise, mark edge e; goto step 2.

6

Algorithms as a technology to resolve efficiency issues

Efficient use of computer resources such as time and space.

Two situations:

(1) very large input data for “easy” problems;

(2) moderately large input data for “hard” problems.

7

Chapter 2. Getting started

Sorting Problem

Input: a sequence of n numbers 〈a1, · · · , an〉;
Output: a reordering 〈a′

1, · · · , a′
n〉 of the input sequence such that

a′
1 ≤ a′

2 ≤ · · · ≤ a′
n.

Insertion Sort

an iterative process to produce a new list that at each iteration, the
list consists of two sublists, a sorted one and an unsorted one, and
the first element in the unsorted list is being inserted into the
sorted one.

8

INSERTION-SORT(A)

1 for j <-- 2 to length[A]

2 do key <-- A[j]

3 {Insert A[j] into sorted A[1..j-1]}.

4 i=j-1

5 while i>0 and A[i] >key

6 do A[i+1] <-- A[i]

7 i=i-1

8 A[i+1] <-- key

Loop invariant (useful for proving the correctness of algorithms)

at each iteration, the sublist A[1..j-1] consists of the elements
originally in the positions [1..j-1] but in sorted order.

properties: initialization, maintenance, and termination

9

Pseudocode conventions

(1) indentation for block structure;

(2) ← for assignment, multiple assignments: x← y ← z is same as
y ← z and then x← y;

(3) only local variables are allowed;

(4) A[i..j] is the subarrray of elements A[i],...A[j];

(5) call-by-value in parameter passing.

10

Analyzing algorithms

(1) random-access machine (RAM)

(2) primitive operations: add, substract, floor, ceiling, multiply,
jump, memory movement, etc. difference: a constant multiplicative
factor.

(3) speed between different machines: a constant multiplicative
factor.

(4) Turing machine model, the O(log n) factor.

11

Analysis of Insertion Sort

INSERTION-SORT(A)

1 for j <-- 2 to length[A]

2 do key <-- A[j]

3 /* Insert A[j] into sorted A[1..j-1] */

4 i=j-1

5 while i>0 and A[i] >key

6 do A[i+1] <-- A[i]

7 i=i-1

8 A[i+1] <-- key

Assume tj to be the number of times while is executed for every j.

T (n) = c1n + c2(n− 1) + c4(n− 1) + c5

n∑
j=2

tj + c6

n∑
j=2

(tj − 1) +

c7

n∑
j=2

(tj − 1) + c8(n− 1)

12

Then for some a, b, c,

T (n) ≤ a
n∑

j=2

tj + bn + c — (1)

and for some d, e, f ,

T (n) ≥ d
n∑

j=2

tj + en + f — (2)

The best case is when the list is already sorted: tj = 1
The worst case is when the list is reversally sorted: tj = j

So we have to use tj = j. We have
T (n) ≤ xn2 + yn + z for some x, y, z, where x > 0 — (3)
T (n) ≥ un2 + vn + w for some u, v,w, where u > 0 — (4)

We will need a simpler notation for T (n).

13

Complexity issues

size of the input: n, the number of bits used to encode the input.

For some problems, we may use different definitions of the input
size.

running time of an algorithm: t(n), the number of primitive
operations executed, defined as a function in the input size n.

worst-case running time: the upper bound on running time for
any input.

average-case running time: the running time ”on average” or
running time on a randomly chosen input assuming all inputs of a
given size (n) are equally likely.

order of growth: e.g., an2 + bn + c, the growth rate depends on
an2 as n grows if a > 0.

14

Designing algorithms

Divide-and-conquer approach: appropriate for problems that can be
solved recursively.

(1) divide the problem into a number of subproblems.

(2) conquer the subproblems by solving them recursively or in a
straightforward manner if the size of a subproblem is small enough.

(3) combine the solutions to the subproblems into a solution for
the original problem.

15

There are some divide-and-conquer approaches for Sorting Problem.

e.g., ”splitting a list into two of equal size” leads to Merge-Sort
algorithm

MERGE-SORT(A, p, r)

1 if p<r

2 then q <--(p+r)/2

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)

16

Analysis of Merge-Sort

n = r − p + 1, assume that n is a power of 2.

(1) time for divide: c1 for split the list into two sublists;

(2) time for conquer: 2T (n/2) for recursively solve subproblems

(3) time for combine: c2n for merging two length n/2 sorted
sublists;

Recurrence:

T (n) = 2T (n/2) + c2n + c1 when n > 1

T (n) = 0 when n = 1

How to solve the recurrence?

17

T(n) = 2T(n/2) + c2n + c1

2T(n/2) = 22T(n/22) + 2c2n/2 + 2c1

22T(n/22) = 23T(n/23) + 22c2n/22 + 22c1

· · ·
2kT(n/2k) = 2k+1T(n/2k+1) + 2kc2n/2k + 2kc1

Let n/2k+1 = 1， then k + 1 = log2n
Then T(n) = 2k+1T(1) + (k + 1) c2n +
T(n) = 0 + c2n log2n + c1(2k+1 − 1) = c2n log2n + c1(n − 1)

How fast does T (n) grow?

When n is big enough, there is a constant a > 0 such that

T (n) ≤ an log2 n.

T (n) cannot grow faster than an log2 n for some constant a > 0.

Apparently, there is a constant b > 0 such that

T (n) ≥ bn log2 n

T (n) grows faster than bn log2 n when n is large enough.

19

Chapter 3. Growth of Functions

Asymptotic notations:
O(g(n)) = { f(n) : Ǝc > 0, n0 > 0 such that 0 ≤ f(n) ≤ cg(n), for all n ≥ n0 }
Ω(g(n)) = { f(n) : Ǝc > 0, n0 > 0 such that 0 ≤ cg(n) ≤ f(n), for all n ≥ n0 }
Ɵ(g(n)) = { f(n) : Ǝc1 > 0, c2 > 0, and n0 > 0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), for all n ≥ n0 }
o(g(n)) = { f(n) : for Ɐc > 0, Ǝn0 > 0 such that 0 ≤ f(n) < cg(n),

for all n ≥ n0 }
ω(g(n)) = { f(n) : for Ɐc > 0, Ǝn0 > 0 such that 0 ≤ cg(n) < f(n),

for all n ≥ n0 }

other notations and functions

floors and ceilings
modular arthmetic
polynomials
exponentials
logarithms
Stirling’s approximation n=

√
2πn(n/e)n(1 + Θ(1/n))

Fibonacci numbers: 0 1 1 2 3 5 8 13........

21

Chapter 4. Recurrences
Techniques to solve recurrences
(1) substitution method – guess and use of math induction
example: T(n) = 3/2T(2n/3) + n
(T(n) = d for n = 1)
guess: T(n) ≤ cn logn + d
verify:
(1) base case n = 1: T(1) = d ≤ 0 + d
(2) general case: T(n) = 3/2T(2n/3) + n
3/2[c(2n/3) log(2n/3) + d] + n

= cn (logn + log2/3) + 3/2d + n
= cn logn + d − cn log3/2 + 1/2d + n

≤ cn log n + d when

1/2d + n ≤ cn log 3/2, i.e., c ≥ 1/2d+n
n log 3/2

23

(2) changing variables

example: T (n) = 2T (
√

n) + log2 n

define m = log2 n, i.e., n = 2m

then T (2m) = 2T (2m/2) + m

rename the function: S(m) = T (2m)

S(m) = 2S(m/2) + m

solve it, we have S(m) = O(m log m)

so T (n) = T (2m) = O(m log m) = O(log n log log n).

24

(3) Recursive-tree method

also based on unfolding the recurrence to make a recursive-tree.

(1) T (n) is a tree with non-recursive terms as the root and
recursive terms as its children.

(2) for each child, replace it with then non-recursive terms and
producing children that are then recursive terms

(3) repeat (2), expand the tree until all children are the base case.

example T (n) = 3T (n/4) + cn2

25

Chapter 5. Probabilistic analysis and randomized
algorithms

(1) probabilistic analysis of algorithms

(2) randomized algorithms

26

HIRE-ASSISTANT (n)

1. best <- 0 {candidate 0 is a dummy candidate}

2. for i <- 1 to n

3 do interview candidate i

4. if candidate i is better than candidate best

5. then best <- i

6 hire candidate i

analyzing the spending in this hiring process.

worst-case n x cost of hiring

average case?

Probabilistic analysis

indicator random variable XA associated with event A. Then

XA = 1 if A occurs;
XA = 0 if A does not occur.

27

Let Xi be the indicator random variable associated with the event
that the ith candidate is hired.

Then X = X1 + · · ·+ Xn, random variable indicating the number
of times we hire a new assistant.

average times = Σn
k=1kProb(X = k) – called expected number of

X, denoted as E[X].

E[X] = E[Σn
i=1Xi] = Σn

i=1E[Xi]

E[Xi] = 1/i assuming candidates arrive at random order.

E[X] = Σn
i=11/i = lnn + O(1)

28

Randomized algorithms

imposing a distribution on any given input, e.g., randomly permute
candidates. randomization is in algorithms, not in the input
distribution.

Each run of a randomized algorithm may produce a different result.

RANDOMIZED-HIRE-ASSISTANT(n)

1. randomily permute the list of candidates

2. best <- 0

3. ...

average hiring cost remains the same.

29

	New Microsoft PowerPoint Presentation.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4

	New Microsoft PowerPoint Presentation.pdf
	Slide Number 1

	New Microsoft PowerPoint Presentation.pdf
	Slide Number 1

	Presentation2.pdf
	Chapter 3. Growth of Functions

	page18-ch1-5.pdf
	Slide Number 1

