Part I. Foundations

- Chapter 1. The role of algorithms in computing
- Chapter 2. Getting started
- Chapter 3. Growth of functions
- Chapter 4. Recurrences
- Chapter 5. Probabilistic analysis and randomized algorithms

Chapter 1. The role of algorithms in computing

Algorithm: ^a well-defined procedure that takes an input and produces an output.

Input
$$
(x) \rightarrow [A] \rightarrow
$$
output (y)

Example: Algorithm *MAX*; *Input*: List $x = \{a_1, \dots, a_n\};$ *Body*: ^a series of instructions; *Output: y,* the maximum of a_1, \dots, a_n . An algorithm specifies ^a *finite process* to compute ^a function or ^a relation.

e.g., algorithm *MAX* computes the following function: $f_{\text{max}}(x) = y$, where $y \ge a, \forall a \in x$.

Questions:

Can an algorithm produce non-unique answers, in other word, different runs of the algorithm produce different results *y* for the same input *^x*?

What are *deterministic, non-deterministic*, *probabilistic*, and *parallel* algorithms?

- Deterministic algorithms: Given the same input, will always produce the same output.
- Non-deterministic algorithms: May produce different outputs for the same input on different runs.
- Probabilistic algorithms: Make use of randomness or probability in its operation.
- Parallel algorithms: Execute multiple computational tasks in parallel, rather than sequentially.

Computational problems

There are many computational problems in the areas of electrical engineering, biological sciences, manufacturing, internet programming etc.

(1) *search problems*: for which algorithms are required to produce an output *y* that may be in ^a complex form.

A search problem corresponds to a general function $f(x) = y$.

(2) *decision problems*: for which algorithms output "yes"/"no".

A decision problem corresponds to a predicate $g(x) = y \in \{0, 1\}.$

Traveling Salesman Problem TSP – search problem *Input*: a weighted undirected graph $G = (V, E);$ *Output*: ^a simple cycle containing all vertices in *V* (Hamiltonian cycle) such that the total cycle weight is the minimum.

A related decision problem:

Input: a weighted undirected graph $G = (V, E)$ and a number *k*; *Output*: "yes" if and only there is ^a weight at most *k* Hamiltonian cycle (a cycle that visit each vertex exactly once and returns to the starting vertex) in *G*.

Claim: The decision problem is not necessarily "easier" than the original search problem.

Actually any "fast" algorithm for the decision problem can be used to quickly construct ^a minimum Hamiltonian cycle for the search problem. How?

Formally, assume that there is an algorithm *A* solving the decision problem:

$$
\langle G, k \rangle \rightarrow [A] \rightarrow ``yes''/``no''
$$

The following process produces ^a minimum Hamiltonian cycle for any given graph *G*.

step 1. decide the minimum weight k_0 for G (how?); step 2. select an arbitrary *unmarked* edge $e = \{u, v\}$; step 3. let $G' = (V, E - \{e\})$, run *A* on $\langle G', k_0 \rangle$ step 4. if the answer is "yes", remove *^e* from *G*; otherwise, mark edge *^e*; goto step 2.

Algorithms as ^a technology to resolve efficiency issues Efficient use of computer resources such as time and space.

Two situations:

- (1) very large input data for "easy" problems;
- (2) moderately large input data for "hard" problems.

Chapter 2. Getting started

SORTING PROBLEM

Input: a sequence of *n* numbers $\langle a_1, \cdots, a_n \rangle$; *Output*: a reordering $\langle a'_1, \cdots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

Insertion Sort

an iterative process to produce ^a new list that at each iteration, the list consists of two sublists, ^a *sorted one* and an *unsorted one*, and the first element in the unsorted list is being inserted into the sorted one.

```
INSERTION-SORT(A)
1 for j \leftarrow -2 to length [A]2 do key \leftarrow A[j]
3 {Insert A[j] into sorted A[1..j-1]}.
4 i=j-15 while i>0 and A[i] >key
6 do A[i+1] <-- A[i]7 \quad i=i-18 A[i+1] <-- key
```
Loop invariant (useful for proving the correctness of algorithms) at each iteration, the sublist $A[1..j-1]$ consists of the elements originally in the positions [1..j-1] but in sorted order. properties: initialization, maintenance, and termination

Pseudocode conventions

(1) indentation for block structure;

(2) ← for assignment, multiple assignments: $x \leftarrow y \leftarrow z$ is same as $y \leftarrow z$ and then $x \leftarrow y$;

(3) only local variables are allowed;

(4) A[i..j] is the subarrray of elements $A[i],...A[j];$

(5) call-by-value in parameter passing.

Analyzing algorithms

(1) random-access machine (RAM)

(2) primitive operations: add, substract, floor, ceiling, multiply, jump, memory movement, etc. difference: ^a constant multiplicative factor.

(3) speed between different machines: ^a constant multiplicative factor.

(4) Turing machine model, the *O*(log *ⁿ*) factor.

Analysis of Insertion Sort INSERTION-SORT(A) 1 for $j \leftarrow -2$ to length $[A]$ 2 do key \leftarrow A[j] ³ /* Insert A[j] into sorted A[1..j-1] */ $4 \t i=j-1$ ⁵ while i>0 and A[i] >key 6 do $A[i+1]$ <-- $A[i]$ $7 \quad i=i-1$ ⁸ A[i+1] <-- key

Assume *^t^j* to be the number of times **while** is executed for every *j*.

$$
T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n - 1)
$$

Then for some a, b, c ,

$$
T(n) \le a \sum_{j=2}^{n} t_j + bn + c \quad (1)
$$

and for some d, e, f ,

$$
T(n) \ge d \sum_{j=2}^{n} t_j + en + f - (2)
$$

The best case is when the list is already sorted: $t_j = 1$ The worst case is when the list is reversally sorted: $t_j = j$

So we have to use $t_j = j$. We have $T(n) \leq xn^2 + yn + z$ for some x, y, z , where $x > 0$ — (3) $T(n) \geq un^2 + vn + w$ for some u, v, w , where $u > 0$ — (4)

We will need a simpler notation for $T(n)$.

size of the input: *ⁿ*, the number of bits used to encode the input. For some problems, we may use different definitions of the input size.

running time of an algorithm: $t(n)$, the number of primitive operations executed, defined as ^a function in the input size *ⁿ*.

worst-case running time: the upper bound on running time for any input.

average-case running time: the running time "on average" or running time on ^a randomly chosen input assuming all inputs of ^a ^given size (*n*) are equally likely.

order of growth: e.g., $an^2 + bn + c$, the growth rate depends on an^2 as *n* grows if $a > 0$.

Designing algorithms

Divide-and-conquer approach: appropriate for problems that can be solved recursively.

(1) **divide** the problem into ^a number of subproblems.

(2) **conquer** the subproblems by solving them recursively or in ^a straightforward manner if the size of ^a subproblem is small enough.

(3) **combine** the solutions to the subproblems into ^a solution for the original problem.

There are some divide-and-conquer approaches for *Sorting Problem*. e.g., "splitting ^a list into two of equal size" leads to Merge-Sort algorithm

```
MERGE-SORT(A, p, r)
```

```
1 if p<r
2 then q \leftarrow -(p+r)/23 MERGE-SORT(A, p, q)
4 MERGE-SORT(A, q+1, r)
5 MERGE(A, p, q, r)
```
Analysis of Merge-Sort

 $n = r - p + 1$, assume that *n* is a power of 2.

(1) time for divide: c_1 for split the list into two sublists;

(2) time for conquer: $2T(n/2)$ for recursively solve subproblems

(3) time for combine: c_2n for merging two length $n/2$ sorted sublists;

Recurrence:

$$
T(n) = 2T(n/2) + c_2n + c_1 \quad \text{when } n > 1
$$

$$
T(n) = 0 \quad \text{when } n = 1
$$

How to solve the recurrence?

$$
T(n) = 2T(n/2) + c_2n + c_1
$$

\n
$$
2T(n/2) = 2^2T(n/2^2) + 2c_2n/2 + 2c_1
$$

\n
$$
2^2T(n/2^2) = 2^3T(n/2^3) + 2^2c_2n/2^2 + 2^2c_1
$$

\n...
\n
$$
2^kT(n/2^k) = 2^{k+1}T(n/2^{k+1}) + 2^k c_2n/2^k + 2^k c_1
$$

\nLet $n/2^{k+1} = 1$, then $k + 1 = log_2n$
\nThen $T(n) = 2^{k+1}T(1) + (k+1) c_2n + c_1 \sum_{i=0}^{k} 2^i$
\n
$$
T(n) = 0 + c_2n log_2n + c_1(2^{k+1} - 1) = c_2n log_2n + c_1(n - 1)
$$

How fast does $T(n)$ grow? When *n* is big enough, there is a constant $a > 0$ such that $T(n) \leq an \log_2 n$.

T(*n*) cannot grow faster than *an* $\log_2 n$ for some constant $a > 0$.

Apparently, there is a constant $b > 0$ such that $T(n) \geq bn \log_2 n$

 $T(n)$ grows faster than $bn \log_2 n$ when *n* is large enough.

Chapter 3. Growth of Functions

Asymptotic notations:

O(*g*(*n*)) = {*f*(*n*) : ∃*c* > 0*, n*₀ > 0 such that 0 ≤ *f*(*n*) ≤ *cg*(*n*)*,* for all *n* ≥ *n*₀ } $Ω(g(n)) = {f(n) : ∃c > 0, n₀ > 0$ such that $0 ≤ cg(n) ≤ f(n)$, for all $n ≥ n₀$ } $\Theta(g(n)) = \{f(n): \exists c_1 > 0, c_2 > 0, \text{ and } n_0 > 0 \text{ such that }$ 0 ≤ $c_1 g(n)$ ≤ $f(n)$ ≤ $c_2 g(n)$, for all $n \ge n_0$ } $o(g(n)) = \{ f(n) : \text{for } \forall c > 0, \exists n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \}$ for all $n \geq n_0$ } $\omega(g(n)) = \{ f(n) : \text{for } \forall c > 0, \exists n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \}$ for all $n \geq n_0$ }

other notations and functions

floors and ceilings modular arthmetic polynomials exponentials logarithms Stirling's approximation $n = \sqrt{2\pi n} (n/e)^n (1 + \Theta(1/n))$ Fibonacci numbers: 0 1 1 2 3 5 8 13........

Chapter 4. Recurrences

Techniques to solve recurrences

```
(1) substitution method – guess and use of math induction
example: T(n) = 3/2T(2n/3) + n
(T(n) = d \text{ for } n = 1)guess: T(n) \le cn \log n + dverify:
(1) base case n = 1: T(1) = d ≤ 0 + d
(2) general case: T(n) = 3/2T(2n/3) + n
3/2[c(2n/3) log(2n/3) + d] + n
= cn (logn + log2/3) + 3/2d + n
= cn logn + d − cn log3/2 + 1/2d + n
```

$$
\le cn \log n + d \text{ when}
$$

1/2d + n \le cn \log 3/2, i.e., $c \ge \frac{1/2d + n}{n \log 3/2}$

(2) changing variables example: $T(n) = 2T(\sqrt{n}) + \log_2 n$ define $m = \log_2 n$, i.e., $n = 2^m$ then $T(2^m) = 2T(2^{m/2}) + m$ rename the function: $S(m) = T(2^m)$ $S(m) = 2S(m/2) + m$ solve it, we have $S(m) = O(m \log m)$

so $T(n) = T(2^m) = O(m \log m) = O(\log n \log \log n)$.

(3) Recursive-tree method

also based on *unfolding* the recurrence to make ^a recursive-tree.

(1) $T(n)$ is a tree with non-recursive terms as the root and recursive terms as its children.

(2) for each child, replace it with then non-recursive terms and producing children that are then recursive terms

(3) repeat (2), expand the tree until all children are the base case. example $T(n) = 3T(n/4) + cn^2$

Chapter 5. Probabilistic analysis and randomized algorithms

- (1) probabilistic analysis of algorithms
- (2) randomized algorithms

HIRE-ASSISTANT (n)

```
1. best <- 0 {candidate 0 is a dummy candidate}
```

```
2. for i <- 1 to n
```

```
3 do interview candidate i
```
4. if candidate i is better than candidate best

```
5. then best <- i
```

```
6 hire candidate i
```
analyzing the spending in this hiring process.

```
worst-case n x cost of hiring
```
average case?

Probabilistic analysis

indicator random variable X_A associated with event *A*. Then

 $X_A = 1$ if *A* occurs; $X_A = 0$ if *A* does not occur. Let X_i be the indicator random variable associated with the event that the *i*th candidate is hired.

Then $X = X_1 + \cdots + X_n$, random variable indicating the number of times we hire ^a new assistant.

average times = $\sum_{k=1}^{n} kProb(X = k)$ – called expected number of *^X*, denoted as *^E*[*X*].

$$
E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]
$$

 $E[X_i] = 1/i$ assuming candidates arrive at random order. $E[X] = \sum_{i=1}^{n} 1/i = \ln n + O(1)$

Randomized algorithms

imposing ^a distribution on *any given input*, e.g., randomly permute candidates. randomization is in algorithms, not in the input distribution.

Each run of ^a randomized algorithm may produce ^a different result.

```
RANDOMIZED-HIRE-ASSISTANT(n)
```

```
1. randomily permute the list of candidates
2. best <- 0
3. ...
```
average hiring cost remains the same.