
Part IV. Advanced design and analysis techniques

Chapter 15. Dynamic programming
Chapter 16. Greedy algorithms

Chapter 15. Dynamic programming

Optimization problems: solutions, optimal solutions, optimal cost

Problems solvable via divide-and-conquer approaches

Issues in dynamic programming

Examples:

(1) matrix-chain multiplication

(2) longest common subsequence

2

Overlapping subproblems

dividing a problem into subproblems, e.g.,

F (n) = F (n − 1) + F (n − 2), F (1) = F (2) = 1.

A direct implementation of a recursive approach leads to exponential

running time.

Instead, a one-dimensional table T [1..n] to look up would help to reduce

running time.

Then it is to compute T [n], the last cell of the table.

The computation can be done by scanning/filling the table from left

to right.

3

Steps for dynamic programming

(1) the structure of optimal solutions

(2) defining optimal cost recursively

(3) computing optimal cost

(4) constructing optimal solution

4

Matrix-chain multiplication

INPUT: given n matrices A1, · · · , An, where Ai has dimension
pi−1 × pi

OUTPUT: a parenthesization by which the product
A1 × A2 × · · · × An uses the minimum number of scalar
multiplications.

Note: The number of all possible parenthesizations
P (n) = Σn−1

k=1P (k)P (n − k), Catalan number.

5

A dynamic programming approach:

step 1: find the structure of a solution, I.e., Optimal solution in
terms of optimal solutions to subproblems: optimal substructure.

(1) the the best parenthesization of AiAi+1 · · ·Aj must be

(Ai · · ·Ak)(Ak+1 · · ·Aj)

for some k, i ≤ k < j.

(2) The optimal cost of AiAi+1 · · ·Aj must be the smallest among
optimal costs for

(Ai · · ·Ak)(Ak+1 · · ·Aj)

k = i, i + 1, · · · , j − 1.

(3) For each k, the optimal cost for the above is the optimal cost
for Ai · · ·Ak plus the optimal cost for Ak+1 · · ·Aj plus the cost for
multiplying these two terms.

6

step 2: a recursive solution.

Define m[i, j] to be the minimum number of scalar multiplications
needed for AiAi+1 · · ·Aj.

Then
m[i, j] = min

i≤k<j
{m[i, k] + m[k + 1, j] + pi−1pkpj}

m[i, j] = 0 when i = j.

7

step 3: computing the optimal cost:

MATRIX-CHAIN-ORDER(p)

1. n <-- length[p] -1

2. for i <-- 1 to n

3 do m[i, i] <-- 0

4. for L <-- 2 to n

5. do for i <-- 1 to n - L + 1

6. do j <-- i + L -1

7. m[i, j] <-- infinite

8. for k <-- i to j - 1

9. do q <- m[i,k]+m[k+1,j]+p[i-1]p[k]p[j]

10. if q < m[i, j]

11. then m[i, j] <-- q

12. s[i, j] <-- k

13. return m and s

Analysis of time complexity?

8

Longest Common Subsequence LCS

ACCGGTCGAGTGCG

GTCGTTCGGAATGC

the longest common subsequence is

CGTCGATGC

fomally, let X = 〈x1, x2, · · · , xm〉 be a sequence

another sequence Z = 〈z1, z2, · · · , zk〉 is a subsequence of X if there
are

i1 < i2 < · · · , < ik indices of X such that xij
= zj for j = 1, · · · , k.

9

Z is a common subsequence of X and Y if Z is a subsequence of X

and Z is a subsequence of Y .

LCS problem:

Input: two sequences X = 〈x1, x2, · · · , xm〉 and Y = 〈y1, y2, · · · , yn〉.

Output: the longest common subsequence of X and Y .

algorithms ??

10

A dynamic programming approach:

step 1. optimal substructure

step 2. a recursive solution

step 3. computing the longest length of an LCS

step 4. constructing a longest common subsequence

11

step 1. optimal substructure

X = 〈x1, x2, · · · , xm〉

Y = 〈y1, y2, · · · , yn〉

(1) If xm = yn then the LCS of X and Y is the LCS for
〈x1, x2, · · · , xm−1〉 and 〈y1, y2, · · · , yn−1〉 appended with xm;

(2) If xm 6= yn, then the LCS of X and Y is either

the LCS for 〈x1, x2, · · · , xm−1〉 and Y or the LCS for X and
〈y1, y2, · · · , yn−1〉.

12

step 2. a recursive solution

Define m[i, j] to be the length of a LCS for 〈x1, x2, · · · , xi〉 and
〈y1, y2, · · · , yj〉. Then

m[i, 0] = 0 and m[0, j] = 0;

when xi = yj , m[i, j] = m[i − 1, j − 1] + 1 and

when xi 6= yj , m[i, j] = max{m[i − 1, j],m[i, j − 1]}.

13

step 3. computing the longest length of an LCS

LCS-LENGTH(X, Y)

1. m <-- length[X]

2. n <-- length[Y]

3. for i <--1 to m

4. do m[i, 0] <-- 0

5. for j <-- 0 to n

6. do m[0, j] <-- 0

7. for i <-- 1 to m

8. do for j <-- 1 to n

9. do if X[i] = Y[j]

10. then m[i, j] <-- m[i-1,j-1] + 1

11. s[i, j] <-- "\"

12. else if m[i-1, j] > m[i, j-1]

13. then m[i, j] <-- m[i-1, j]

14 s[i, j] <-- "|"

15. else m[i, j] <-- m[i, j-1]

16. s[i, j] <-- "-"

17. return m and s

14

step 4. constructing a longest common subsequence

PRINT-LCS(s, X, i, j)

1. if i = 0 or j=0

2. then return

3. if s[i, j] = ’\’

4. then PRINT-LCS(s, X, i-1, j-1)

5. print(X[i])

6. else if s[i, j] = ’|’

7. then PRINT-LCS(s, X, i-1, j)

8. else PRINT-LCS(s, X, i, j-1)

Running time?

15

Pairwise Sequence alignment

Input: X,Y ∈ {A,C,G, T}∗

Output: X ′, Y ′, where X ′ and Y ′ are of the same length r

obtained from X and Y by inserting spaces ’ ’,
and the score Σr

i=1d(X ′[i], Y ′[i]) is the maximum.

where scoring matrix d5×5

d(a, b) = 1 if a = b and neither is a ’ ’
d(a, b) = −1 if a 6= b and neither is a ’ ’
d(a, b) = −2 if either is a ’ ’.

The LCS problem is a special case of pairwise sequence alignment
where d(a, b) = 1 if a = b; and 0 otherwise.

16

Dynamic programming for pairwise sequence alignment

step 1: problem analysis and finding recursive solutions

Consider aligning prefixes

x1, . . . , xi

y1, . . . , yj

(1) xi is aligned to yj , reducing the problem to aligning

x1, . . . , xi−1

y1, . . . , yj−1

(2) xi is aligned to gap ’ ’, reducing the problem to aligning

x1, . . . , xi−1

y1, . . . , yj

(3) yj is aligned to gap ’ ’, reducing the problem to

x1, . . . , xi

y1, . . . , yj−1

17

step 2: Define optimal cost function recursively

Define S(i, j) to be the optimal score of the alignment between

x1, . . . , xi and y1, . . . , yj

Then S(i, j) has the recurrences:

S(i, j) = max{S(i − 1, j − 1) + d(xi, yj),

S(i − 1, j) + d(xi,
′ ′),

S(i, j − 1) + d(′ ′, yj) }

S(i, 0) =
i∑

k=1

d(xi,
′ ′)

S(0, j) =
j∑

k=1

d(′ ′, yj)

steps 3, 4 are similar to those for the LCS problem.

18

Multiple sequence alignment

Input: sequences s1, s2, . . . , sk

Output: an alignment A for these sequences such that

the SP score achieves the maximum

where SP, the sum of pairs, is
∑
i<j

Ci,j , in which Ci,j is the alignment

score between si and sj induced by the multiple alignment A.

Extending the dynamic programming for pairwise alignment to multiple

alignment

19

Chapter 16 Greedy Algorithms

Dynamic programming is to consider all possible choices and select
the best.

always lead to the optimal solution

A greedy algorithm may ignore some choices and select one that is
locally the best.

a good greedy strategy may lead to the optimal solution

20

Activity-selection problem

Input: a set of activities, each with a start time and finish time
Output: a maximum size subset of mutually compatible activities.

A dynamic programming solution

step 1 analysis of problem

Sij = {ak ∈ S : fi ≤ sk < fk ≤ sj}

Aij is such that

|Aij | = max
ak∈Sij

{|Aik ∪ {ak} ∪ Akj|}

step 2 define c[i, j] to be the size of Aij . Then recurrence

c[i, j] = maxi<k<j{c[i, k] + c[k, j] + 1}.

21

Converting the dynamic programming solution to a greedy solution:

Theorem 16.1 Let Sij be a non-empty set and am ∈ Sij with earliest

finish time:

fm = min{fk : ak ∈ Sij}

Then

(1) am is used in some maximum size subset of mutually

compatible activities of Sij

(2) the subproblem Sim is empty, so that choosing am leaves the

subproblem Smj as the only one that may be nonempty.

Significance of the theorem: it helps to reduce the number of

subproblems to consider.

22

RECURSIVE-ACTIVITY-SELECTION(s, f, i, j)
1. m <-- i + 1
2. while m < j and Sm < fi

3. m <-- m + 1
4. if fm < sj

5. then return {am} U RECURSIVE-ACTIVITY-SELECTION(s, f, m, j)
6. else return 0

steps for the greedy strategy

1. determine the optimal substructure

2. develop a recursive solution

3. prove that at any stage of the recursion, one of the optimal
choice is the greedy choice – it is safe to make that greedy choice

4. show that all but one of the subproblems induced by the greedy
choice are empty.

example

24

Knapsack problems

input: n items 1, 2, · · · , n, each with size si and value vi, a knapsack
with size B,

output: a subset of items with total value maximized and total size
≤ B.

0-1 Knapsack

fractional Knapsack

optimal substructure?

recursive solution?

greedy strategy?

25

(1) Does dynamic programming approach produce optimal solution
for 0-1 Knapsack?

(2) Does dynamic programming approach runs in polynomial time
on 0-1 knapsack?

(3) Does greedy approach produce optimal solution for 0-1
knapsack?

(4) Does greedy approach produce optimal solution for fractional
knapsack?

(5) Does greedy approach runs in polynomial time on fractional
knapsack?

26

Huffman Code

compressing data using binary bits

code: a compressing scheme

fixed-length code

variable-length code

character a b c d e f

--

frequency .45 .13 .12 .16 .09 .05

fixed-length 000 001 010 011 100 101

var-length

decoding process, code tree, prefix code

27

Finding an optimal prefix code (Huffman)

code tree

cost:
B(T) =

∑

c∈C

f(c)dT (c)

1. optimal substructure?

2. recursive solution?

3. greedy choice?

4. all but one subproblems induced by the greedy choice are empty?

28

5. development of a greedy algorithm

HUFFMAN(C, f)

1. n <-- |C|

2. Q <-- C

3. for i =1 to n-1

4. do newnode(z)

5. leftchild[z] <-- x <-- EXTRACT-MIN(Q)

6. rightchild[z] <-- y <-- EXTRACT-MIN(Q)

7. f(z) <-- f(x) + f(y)

8. INSERT(Q, z)

9. return EXTRACT-MIN(Q)

29

Correctness of Huffman’s algorithm

Lemma 16.2 (Greedy choice property)

Let C be an alphabet and f be the frequence function for
characters in C. Let x and y be two characters in C having the
lowest frequencies. Then there exists an optimal prefix code for C

in which the codewords for x and y have the same length and differ
in the last bit.

Proof:

30

Lemma 16.3 (Optimal substructure)

Let C be an alphabet and f be the frequence function for
characters in C. Let x and y be two characters in C having the
lowest frequencies. Let

C ′ = C − {x, y} ∪ {z}

and the frequency function for C ′ is the same as f except that
f(z) = f(x) + f(y).

Let T ′ be any an optimal prefix code tree for C ′. Then the tree T

obtained from T ′ by replacing the leaf node z with an internal node
having x and y as children, is an optimal prefix code tree for C.

Proof:

Theorem 16.4 Huffman’s algorithm produces an optimal prefix
code.

31

	Ch15-16-page1.pdf
	Slide Number 1

	Ch15-16-page1.pdf
	Slide Number 1

	ch15-16-page23.pdf
	Slide Number 1

