Part IV. Advanced design and analysis techniques

Chapter 15. Dynamic programming Chapter 16. Greedy algorithms

Chapter 15. Dynamic programming

Optimization problems: solutions, optimal solutions, optimal cost *Problems solvable* via divide-and-conquer approaches *Issues in dynamic programming* Examples:

- (1) matrix-chain multiplication
- (2) longest common subsequence

Overlapping subproblems

dividing ^a problem into subproblems, e.g.,

$$
F(n) = F(n-1) + F(n-2), F(1) = F(2) = 1.
$$

A direct implementation of ^a recursive approach leads to exponential running time.

Instead, ^a one-dimensional table *^T*[1*..n*] to look up would help to reduce running time.

Then it is to compute $T[n]$, the last cell of the table.

The computation can be done by scanning/filling the table from left to right.

Steps for dynamic programming

- (1) the structure of optimal solutions
- (2) defining optimal cost recursively
- (3) computing optimal cost
- (4) constructing optimal solution

Matrix-chain multiplication

INPUT: given *n* matrices A_1, \dots, A_n , where A_i has dimension $p_{i-1} \times p_i$

OUTPUT: ^a parenthesization by which the product $A_1 \times A_2 \times \cdots \times A_n$ uses the minimum number of scalar multiplications.

Note: The number of all possible parenthesizations $P(n) = \sum_{k=1}^{n-1} P(k)P(n-k)$, Catalan number.

A dynamic programming approach:

step 1: find the structure of ^a solution, I.e., Optimal solution in terms of optimal solutions to subproblems: *optimal substructure*.

(1) the the best parenthesization of $A_iA_{i+1}\cdots A_j$ must be

$$
(A_i \cdots A_k)(A_{k+1} \cdots A_j)
$$

for some $k, i \leq k < j$.

(2) The optimal cost of $A_iA_{i+1}\cdots A_j$ must be the smallest among optimal costs for

$$
(A_i \cdots A_k)(A_{k+1} \cdots A_j)
$$

 $k = i, i + 1, \cdots, j - 1.$

(3) For each *k*, the optimal cost for the above is the optimal cost for $A_i \cdots A_k$ plus the optimal cost for $A_{k+1} \cdots A_j$ plus the cost for multiplying these two terms.

step 2: ^a recursive solution.

Define $m[i, j]$ to be the minimum number of scalar multiplications needed for $A_iA_{i+1}\cdots A_j$.

Then

$$
m[i,j] = \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \}
$$

 $m[i, j] = 0$ when $i = j$.

step 3: computing the optimal cost:

```
MATRIX-CHAIN-ORDER(p)
1. n \leftarrow \text{length}[p] -12. for i <-- 1 to n
3 do m[i, i] \leftarrow -04. for L <-- 2 to n
5. do for i <-- 1 to n - L + 1
6. do j \leftarrow -i + L -17. m[i, j] <-- infinite
8. for k <-- i to j - 19. do q <- m[i,k]+m[k+1,j]+p[i-1]p[k]p[j]10. if q < m[i, j]
11. then m[i, j] <-- q
12. s[i, j] < -k13. return m and s
```
Analysis of time complexity?

Longest Common Subsequence LCS ACCGGTCGAGTGCG GTCGTTCGGAATGC the longest common subsequence is CGTCGATGC fomally, let $X = \langle x_1, x_2, \cdots, x_m \rangle$ be a sequence another sequence $Z = \langle z_1, z_2, \dots, z_k \rangle$ is a *subsequence* of *X* if there are

 $i_1 < i_2 < \cdots, i_k$ indices of *X* such that $x_{i_j} = z_j$ for $j = 1, \cdots, k$.

Z is ^a *common subsequence* of *X* and *Y* if *Z* is ^a subsequence of *X* and *Z* is ^a subsequence of *Y* .

LCS problem:

Input: two sequences $X = \langle x_1, x_2, \cdots, x_m \rangle$ and $Y = \langle y_1, y_2, \cdots, y_n \rangle$. Output: the longest common subsequence of *X* and *Y* . algorithms ??

- A dynamic programming approach:
- **step 1**. optimal substructure
- **step 2**. ^a recursive solution
- **step 3**. computing the longest length of an LCS
- **step 4**. constructing ^a longest common subsequence

step 1. optimal substructure

$$
X = \langle x_1, x_2, \dots, x_m \rangle
$$

\n
$$
Y = \langle y_1, y_2, \dots, y_n \rangle
$$

\n(1) If $x_m = y_n$ then the LCS of X and Y is the LCS for
\n $\langle x_1, x_2, \dots, x_{m-1} \rangle$ and $\langle y_1, y_2, \dots, y_{n-1} \rangle$ appended with x_m ;
\n(2) If $x_m \neq y_n$, then the LCS of X and Y is either
\nthe LCS for $\langle x_1, x_2, \dots, x_{m-1} \rangle$ and Y or the LCS for X and
\n $\langle y_1, y_2, \dots, y_{n-1} \rangle$.

step 2. ^a recursive solution

Define $m[i, j]$ to be the length of a LCS for $\langle x_1, x_2, \dots, x_i \rangle$ and $\langle y_1, y_2, \cdots, y_j \rangle$. Then $m[i, 0] = 0$ and $m[0, j] = 0$; when $x_i = y_j$, $m[i, j] = m[i - 1, j - 1] + 1$ and when $x_i \neq y_j$, $m[i, j] = \max\{m[i - 1, j], m[i, j - 1]\}.$

step 3. computing the longest length of an LCS

```
LCS-LENGTH(X, Y)
1. m \le -1 length [X]2. n \le - length [Y]3. for i <--1 to m
4. do m[i, 0] <-- 0
5. for j <-- 0 to n
6. do m[0, j] <-- 0
7. for i <-- 1 to m
8. do for j \leftarrow -1 to n
9. do if X[i] = Y[j]10. then m[i, j] <-- m[i-1, j-1] + 1
11. s[i, j] < -1"
12. else if m[i-1, j] > m[i, j-1]13. then m[i, j] <-- m[i-1, j]14 s[i, j] \langle - - "|"
15. \text{else } m[i, j] \leq -m[i, j-1]16. s[i, j] <-- "-"
```
17. return ^m and ^s

```
step 4. constructing a longest common subsequence
PRINT-LCS(s, X, i, j)
1. if i = 0 or j=02. then return
3. if s[i, j] = ' \backslash'4. then PRINT-LCS(s, X, i-1, j-1)
5. print(X[i])
6. else if s[i, j] = \prime|'
7. then PRINT-LCS(s, X, i-1, j)
8. else PRINT-LCS(s, X, i, j-1)
```
Running time?

Pairwise Sequence alignment

INPUT: $X, Y \in \{A, C, G, T\}^*$ OUTPUT: X', Y' , where X' and Y' are of the same length r obtained from X and Y by inserting spaces $'$. and the score $\sum_{i=1}^{r} d(X'[i], Y'[i])$ is the maximum.

where *scoring* matrix $d_{5\times 5}$

 $d(a, b) = 1$ if $a = b$ and neither is a '.' $d(a, b) = -1$ if $a \neq b$ and neither is a '_' $d(a, b) = -2$ if either is a '_'.

The LCS problem is ^a special case of pairwise sequence alignment where $d(a, b) = 1$ if $a = b$; and 0 otherwise.

Dynamic programming for pairwise sequence alignment **step 1**: problem analysis and finding recursive solutions Consider aligning prefixes

 x_1, \ldots, x_i y_1, \ldots, y_j

(1) x_i is aligned to y_j , reducing the problem to aligning

 x_1, \ldots, x_{i-1} *y*₁*,* \cdots *, y*_{*i*}−1

(2) x_i is aligned to gap '.', reducing the problem to aligning

```
x_1, \ldots, x_{i-1}y_1, \ldots, y_j(3) y_j is aligned to gap '.', reducing the problem to
         x_1, \ldots, x_iy_1, \ldots, y_{j-1}
```
step 2: Define optimal cost function recursively

Define $S(i, j)$ to be the optimal score of the alignment between x_1, \ldots, x_i and y_1, \ldots, y_j

Then $S(i, j)$ has the recurrences:

$$
S(i, j) = \max\{S(i - 1, j - 1) + d(x_i, y_j),
$$

$$
S(i - 1, j) + d(x_i, ' -'),
$$

$$
S(i, j - 1) + d(' -', y_j)
$$

$$
S(i, 0) = \sum_{k=1}^{i} d(x_i, ' _')
$$

$$
S(0, j) = \sum_{k=1}^{j} d(' _ , y_j)
$$

steps 3, 4 are similar to those for the LCS problem.

Multiple sequence alignment

INPUT: sequences s_1, s_2, \ldots, s_k

OUTPUT: an alignment A for these sequences such that

the SP score achieves the maximum

where SP, the sum of pairs, is \sum $i{<}j$ $C_{i,j}$, in which $C_{i,j}$ is the alignment score between s_i and s_j induced by the multiple alignment A .

Extending the dynamic programming for pairwise alignment to multiple alignment

Chapter 16 Greedy Algorithms

Dynamic programming is to *consider all possible choices and select the best*.

always lead to the optimal solution

A greedy algorithm may *ignore some choices and select one that is locally the best*.

^a good greedy strategy may lead to the optimal solution

Activity-selection problem

Input: ^a set of activities, each with ^a start time and finish time OUTPUT: a maximum size subset of mutually compatible activities.

A dynamic programming solution

step 1 analysis of problem

 $S_{ij} = \{a_k \in S : f_i \le s_k < f_k \le s_j\}$

 A_{ij} is such that

$$
|A_{ij}| = \max_{a_k \in S_{ij}} \{ |A_{ik} \cup \{a_k\} \cup A_{kj}|\}
$$

step 2 define $c[i, j]$ to be the size of A_{ij} . Then recurrence $c[i, j] = \max_{i \le k \le j} \{c[i, k] + c[k, j] + 1\}.$

Converting the dynamic programming solution to a greedy solution: **Theorem 16.1** Let S_{ij} be a non-empty set and $a_m \in S_{ij}$ with earliest finish time:

$$
f_m = \min\{f_k : a_k \in S_{ij}\}
$$

Then

- (1) a_m is used in some maximum size subset of mutually compatible activities of *S*ij
- (2) the subproblem S_{im} is empty, so that choosing a_m leaves the subproblem S_{mj} as the only one that may be nonempty.

Significance of the theorem: it helps to reduce the number of subproblems to consider.

RECURSIVE-ACTIVITY-SELECTION(s, f, i, j) 1. $m \leftarrow i + 1$ 2. while m < j and $S_m < f_i$

- 3. $m < -m + 1$
- 4. if $f_m < s_i$

5. then return $\{a_m\}$ U RECURSIVE-ACTIVITY-SELECTION(s, f, m, j) 6. else return 0

steps for the greedy strategy

1. determine the optimal substructure

2. develop ^a recursive solution

3. prove that at any stage of the recursion, one of the optimal choice is the greedy choice $-$ it is safe to make that greedy choice

4. show that all but one of the subproblems induced by the greedy choice are empty.

example

Knapsack problems

input: n items $1, 2, \dots, n$, each with size s_i and value v_i , a knapsack with size *B*,

output: ^a subset of items with total value maximized and total size ≤ *B*.

0-1 Knapsack

fractional Knapsack

optimal substructure?

recursive solution?

greedy strategy?

(1) Does dynamic programming approac^h produce optimal solution for 0-1 Knapsack?

(2) Does dynamic programming approac^h runs in polynomial time on 0-1 knapsack?

(3) Does greedy approac^h produce optimal solution for 0-1 knapsack?

(4) Does greedy approac^h produce optimal solution for fractional knapsack?

(5) Does greedy approac^h runs in polynomial time on fractional knapsack?

Huffman Code

compressing data using binary bits

code: ^a compressing scheme

fixed-length code

variable-length code

decoding process, code tree, prefix code

Finding an optimal prefix code (Huffman)

code tree

cost:

$$
B(T) = \sum_{c \in C} f(c)d_T(c)
$$

- 1. optimal substructure?
- 2. recursive solution?
- 3. greedy choice?
- 4. all but one subproblems induced by the greedy choice are empty?

```
5. development of a greedy algorithm
HUFFMAN(C, f)
1. n \leftarrow |\mathbb{C}|2. Q \leftarrow C3. for i = 1 to n-14. do newnode(z)
5. leftchild[z] <-- x <-- EXTRACT-MIN(Q)
6. rightchild[z] <-- y <-- EXTRACT-MIN(Q)
7. f(z) \leq -f(x) + f(y)8. INSERT(Q, z)
9. return EXTRACT-MIN(Q)
```
Correctness of Huffman's algorithm

Lemma 16.2 (Greedy choice property)

Let *C* be an alphabet and *f* be the frequence function for characters in *C*. Let *^x* and *y* be two characters in *C* having the lowest frequencies. Then there exists an optimal prefix code for *C* in which the codewords for *^x* and *y* have the same length and differ in the last bit.

Proof:

Lemma 16.3 (Optimal substructure)

Let *C* be an alphabet and *f* be the frequence function for characters in *C*. Let *^x* and *y* be two characters in *C* having the lowest frequencies. Let

$$
C'=C-\{x,y\}\cup\{z\}
$$

and the frequency function for C' is the same as f except that $f(z) = f(x) + f(y).$

Let T' be any an optimal prefix code tree for C' . Then the tree T obtained from T' by replacing the leaf node z with an internal node having *^x* and *y* as children, is an optimal prefix code tree for *C*. Proof:

Theorem 16.4 Huffman's algorithm produces an optimal prefix code.