Part VI Graph algorithms

Chapter 22 Elementary Graph Algorithms Chapter 23 Minimum Spanning Trees Chapter 24 Single-source Shortest Paths

Chapter 22 Elementary Graph Algorithms

- Representations of graphs
- breadth-first-search (BFS)
- depth-first-search (DFS)
- applications:
	- (1) topological sort
	- (2) strongly connected components

representations of graphs

adjacency-list

adjacency-matrix

incidence matrix for directed graphs (The incidence matrix of ^a directed graph D is a p q matrix $[b_{ij}]$ where p and q are the number of vertices and edges respectively, such that $b[i,j]=1$ if the edge x_j leaves vertex v_i , 1 if it enters vertex v_i and 0 otherwise. (Note that many authors use the opposite sign convention.) examples

BFS

The idea of ^a breadth first search: "closest nodes" are visited first data structure to use: queue example:

$BFS(G, s)$

```
1. for each u in V[G] - s
2 do visit [u] <-- 'unvisited'
3. parent[u] <-- null
4. visit[s] <-- 'visited'
5. parent[s] <-- null
6. Q <-- MakeEmptyQueue()
7. Enqueue(Q, s)
8. while Not IsEmptyQueue(Q)
9. do u <-- Dequeue(Q)
10. for each v in Adj[u]
11. \qquad \qquad do if visit [v] = 'unvisited'12. then visit[v] <-- 'visited'
13. parent [v] <-- u
14. Enqueue(Q, v)
```
15 return paren^t

BFS tree

cost of BFS $O(|V| + |E|)$

BFS can find ^a shortest path from *^s* to all other nodes (without weight). But why?

DFS

The idea of ^a depth first search: "deepest nodes" are visited first data structure to use: stack

```
DFS(G, s)1. for each u in V[G] - s
2 do visit[u] <-- 'unvisited'
3. parent[u] <-- null
4. visit[s] <-- 'visited'
6. S <-- MakeEmptyStack()
7. Push(S, s)
8. while Not IsEmptyStack(S)
9. do u <-- Pop(S)
10. visit[u] = 'visited'11. for each v in Adj[u]
12. if visit[v] = 'unvisited'13. then parent [v] <-- u
14. Push(S, v)
15. return parent
```
^a recursive DFS algorithm (which also generates timestamps)

 $DFS(G)$

- 1. for each node ^u in V[G]
- 2. do parent[u] <-- null
- 3. time <-- 0
- 4. for each node ^u in V[G]
- 5. do if visit $[u] = 'unvisited'$
- 6. then DFS-VISIT(u)

```
DFS-VISIT(u)
1. time <-- time + 1
2. discover[u] <-- time
3. visit[u] <-- 'visited'
4. for each v in Adj[u]
5. do if visit [v] = 'unvisited'6. then parent [v] <-- u
7. DFS-VISIT(v)
8 time <-- time + 1
8. finish[u] <-- time
```
running time ?

Properties of depth-first-search

- (1) $u = parent[v]$ iff DFS-VISIT(v) is called
- (2) **parenthesis structure**: for any *u, ^v* exactly one of the following three conditions holds:
	- (a) α discover[u], finish[u] and α discover[v], finish[v]] are entirely disjoint, and neither ^u nor ^v is ^a descendant of the other in the search tree.
	- (b) α discover [u], finish [u] is contained entirely within [discover[v], finish[v]] and u is a descendant of v , OR
	- (c) α discover[v], finish[v] is contained entired within [discover[u], finish[u]] and v is a descendant of u .

WHITE-PATH THEOREM: v is a descendant of u if and only at time discover [u] that the search discovers u, node v can be reached from ^u along ^a path consisting entirely of white ('unvisited') nodes.

Classification of edges (for **directed graphs**)

- (1) tree edges: those in the search tree (forest)
- (2) back edges: those connecting ^a vertex to an ancester
- (3) forward edges: those connecting ^a vertex to ^a descendant
- (4) cross edges: all other edges

THEOREM 22.10 In a depth-first-search of an **undirected** graph *G*, every edge of *G* is either ^a tree edge or ^a back edge.

Topological sorting

DAG: directed acyclic graphs example: edges \subseteq R(prerequisite, course) reverse order of their finish time

Strongly connected components

Let $G = (V, E)$ be a di-graph. A *strongly connected component* is a maximal subgraph $H = (V_H, E_H)$ of *G* such that for every two nodes $v, u \in V_H$, there is a path consisting of edges in E_H from v to *u* and there is a path consisting of edges in E_H from *u* to *v*.

Algorithm

STRONLY-CONNECTED-COMPONENTS(G)

- 1. call DFS(G) to compute finish[u] for each ^u in V[G]
- 2. compute GT ⁼ transpose of G
- 3. call DFS(GT) (in which vertices are considered

in order of decreasing finish[u]

as computed in step 1.)

4. output the vertices of each tree in the depth-first forest produced by step 3.

Properties:

(1) Component graph: $G^{SCC} = (V^{SCC}, E^{SCC})$. G^{SCC} is a dag. Let *C* be a SCC, define finish(C) = $\max_{u \in C}$ finish[u].

(2) LEMMA 22.14: Let C and C' be distinct strongly connected components for *G*. If $(u, v) \in E$, where $u \in C$ and $v \in C'$, then $f(C) > f(C')$.

(3) Theorem 22.16: STRONLY-CONNECTED-COMPONENTS(G) correctly computes the strongly connected components for ^a directed graph *G*.

Others

Algorithm for computing connected components in undirected graphs.

Reachability problem: given $G = (V, E)$, and $u, v \in V$, is there a path from *^u* to *^v*?

[Is there an SQL program that can solve Reachability problem?]

Chapter 23. Minimum Spanning Trees

spanning trees (MST)

MST: given a connected, undirected graph $G = (V, E)$ with $w: E \to R$, find a spanning tree *T* such that

$$
W(T) = \sum_{(u,v)\in T} w(u,v)
$$
 is the minimum

Two greedy algorithms: (1) Kruskal's and (2) Prim's based on ^a generic MST algorithm.

The idea: growing an MST by adding one edge to ^A at ^a time until ^A forms ^a spanning tree.

But which edge to add??

Growing an MST

```
GENERIC-MST(G,w)
```
1. A \leftarrow empty 2. while A does not form ^a spanning tree 3. do find an edge (u, v) that is safe for ^A 4. $A \leftarrow - A \cup \{(u, v)\}$ 5. return A

loop invariant: A is ^a subset of some MST safe edge: one does not cause ^a cycle while maintaining the invariant

cut: $(S, V - S)$ is a partition of *V*

crossing: (u, v) crosses cut $(S, V - S)$ if u and v are in S and $V - S$ respectively (or if *v* and *u* are in *S* and $V - S$ respectively)

respecting: ^a cut respects ^a set *A* of edges if no edge in *A* crosses the cut.

light edge: an edge is ^a light edge crossing ^a cut if its weight is the minimum of any edge crossing the cut.

Theorem 23.1 Let $G = (V, E)$ Let A be a subset of *E* that is included in some MST for *G*, let $(S, V - S)$ be any cut of *G* that respect A , and let (u, v) be a light edge crossing the cut. Then edge (u, v) is safe for A.

Proof: (1) does not form ^a cycle; (2) A is still ^a subset of some MST

MST-KRUSKAL(G,w)

1. A \leftarrow empty

- 2. for each vertex ^v in V[G]
- 3 do MAKE-SET(v)
- 4. sort E into nondecreasing order by weight ^w
- 5. for each edge (u, v) in E, taken in order

```
6. do if FIND-SET(u) \iff FIND-SET(v)
```

```
7. then A \le -A \cup \{(u, v)\}\
```

```
8. UNION(u, v)
```
9 return A

disjoint-set data structure and operations: MAKE-SET, FIND-SET and UNION

running time: $O(|E|\log |V|)$

Prim's algorithm for MST

MST-PTIM(G, w, r)

```
1. for each u in V[G]
2. do key[u] <-- infinite
3. parent[u] <-- NULL
4. key[r] <-- 0
5. Q \leftarrow -V[G]6. while Q is not empty
7. do u <-- EXTRACT-MIN(Q)
8. for each v in Adj[u]
9. do if v in Q and w(u,v) < key[v]10. then parent [v] <-- u
11. key[v] \leq -w(u, v)12. return parent
```
Priority queue: Q running time? $O(|E|\log |V|)$.

```
UNKNOWN(G, w, r)
```

```
1. for each u in V[G]
2. do key[u] <-- infinite
3. parent[u] <-- NULL
4. key[r] <-- 0
5. Q \leftarrow -V[G]6. while Q is not empty
7. do u <-- EXTRACT-MIN(Q)
8. for each v in Adj[u]
9. do if w(u,v) + key[u] < key[v]
10. then parent [v] <-- u
11. key[v] \leq -w(u, v) + key[u]12. return parent
```
Chapter 24. Single-source shortest paths

single source: *^s* weighted edges: $w(u, v) \in R$ path weight: $w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$ shortest path weight:

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}$

Single-source shortest paths: from s to each vertex $v \in V$ **Single-destination shortest paths**: to vertex t from each vertex $v \in V$

Single-pair shortest path: from ^s to t

All-pairs shortest paths: from s to t for all pairs $s, t \in V$.

Lemma 24.1 (subpaths of shortest paths are shortest paths)

Given a weighted directed graph $G = (V < E)$ with weight function *w*. Let $p = (v_1, v_2, \dots, v_k)$ be a shortest path from v_1 to v_k . Then $p_{i,j} = (v_i, \dots, v_j)$ is a shorest path from v_i to v_j .

negative weights:

cycles: negative weight cycles, positive weight cycles, 0 weight cycles

representing shortest paths: predecessor *^π*

shortest path tree:

Technique: relaxation

Let $d[v]$ be an upper bound on the weight of a shortest path from s to *v*, initialized ∞ .

The process of relaxing edge (u, v) : improve $d[v]$ so far by going through *u*, and update $d[v]$ and $\pi[v]$.

Bellman-Ford algorithm

BELLMAN-FORD((G, w, s) 1. for each vertex ^v in V[G] {initialization} 2. do $d[v]$ <-- infinite 3. pi[v] <-- null 4. $d[s]$ <-- 0

5. for i
$$
\leftarrow
$$
 1 to |V| -1 { relaxation}
\n6. do for each edge (u, v) in E[G]
\n7. do if $d[v] > d[u] + w(u, v)$
\n8. then $d[v] <- - d[u] + w(u, v)$
\n9. $pi[v] <- u$

\n- 10. for each edge
$$
(u, v)
$$
 in E[G] {checking negative}
\n- 11. do if $d[v] > d[u] + w(u, v)$ {weight cycle}
\n- 12. then return FALSE
\n

13. return TRUE

running time : $O(|V||E|)$

Lemma 24.2 Let $G = (V, E)$ be a weighted, directed graph with source s and weight function $w : E \to R$ and assume that G contains no negative weight cycles that can be reached from s. Then after $|V| - 1$ iterations of line 5 in the algorithm, $d[v] = \delta(s, v)$ for all vertices v that are reachable from ^s.

Theorem 24.4 Bellman-Ford algorithm is correct on weighted, directed graphs.

(1) Lemma 24.2 shows the correctness on weighted, directed graphs without negative weight cycles.

 (2) we need to show, when G contains a negative weight cycle reachable from ^s, the algorithm returns FALSE

assume the cycle to be $c = (v_0, v_1, \dots, v_k)$, where $v_0 = v_k$ and

$$
\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0
$$

Then because $d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i)$

$$
\sum_{i=1}^{k} d[v_i] \leq \sum_{i=1}^{k} (d[v_{i-1}] + w(v_{i-1}, v_i))
$$

$$
\leq \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)
$$

But

$$
\sum_{i=1}^{k} d[v_i] = \sum_{i=1}^{k} d[v_{i-1}]
$$

implying
$$
\sum_{i=1}^{k} w(v_{i-1}, v_i) \geq 0.
$$

Single-source shorest paths on DAG

```
DAG-SHORTEST PATHS(G, w, s)
```
1. topologically sort the vertices of G 2. for each vertex ^v in V[G] {initialization} 3. do $d[v]$ <-- infinite 4. pi[v] <-- null 5. $d[s] < -0$

```
6. for each u in V[G], in topologically sorted order
7. do for each vertex v in Adj[u]
8. do if d[v] > d[u] + w(u, v)9. then d[v] <-- d[u] + w(u, v)10. pi[v] <-- u
```
11. return d and pi running time: $O(V + E)$ Dijkstra's algorithm On weighted, directed graphs in which each edge has non-negative weight.

```
DIJKSTRA(G, w, s)
```

```
1. for each vertex v in V[G] {initialization}
2. do d[v] <-- infinite
3. pi[v] <-- null
4. d[s] <-- 0
5. S \leftarrow - empty
6. Q \leftarrow -V[G]
```
7. while Q is not empty 8. do ^u <-- EXTRACT-MIN(Q) 9. S <-- S U {u} 10. for each vertex ^v in Adj[u] 11. do if $d[v] > d[u] + w(u, v)$ 12. then $d[v]$ <-- $d[u]$ + $w(u, v)$

13. pi[v] <-- ^u

running time: $O((V + E)lgV)$

Correctness of the algorithm: **Theorem 24.6**, proof by the use of following loop invariant for the while loop:

 $d[v] = \delta(s, v)$ for each $v \in S$.

Can it deal with negative weight edges?