
Part VI Graph algorithms

Chapter 22 Elementary Graph Algorithms

Chapter 23 Minimum Spanning Trees

Chapter 24 Single-source Shortest Paths

1

Chapter 22 Elementary Graph Algorithms

Representations of graphs

breadth-first-search (BFS)

depth-first-search (DFS)

applications:
(1) topological sort
(2) strongly connected components

2

representations of graphs

adjacency-list

adjacency-matrix

incidence matrix for directed graphs (The incidence matrix of a
directed graph D is a p q matrix [bij] where p and q are the
number of vertices and edges respectively, such that b[i,j]=1 if the
edge xj leaves vertex vi, 1 if it enters vertex vi and 0 otherwise.
(Note that many authors use the opposite sign convention.)

examples

3

BFS

The idea of a breadth first search:

”closest nodes” are visited first

data structure to use: queue

example:

4

BFS(G, s)

1. for each u in V[G] - s

2 do visit[u] <-- ’unvisited’

3. parent[u] <-- null

4. visit[s] <-- ’visited’

5. parent[s] <-- null

6. Q <-- MakeEmptyQueue()

7. Enqueue(Q, s)

8. while Not IsEmptyQueue(Q)

9. do u <-- Dequeue(Q)

10. for each v in Adj[u]

11. do if visit[v] = ’unvisited’

12. then visit[v] <-- ’visited’

13. parent[v] <-- u

14. Enqueue(Q, v)

15 return parent

5

BFS tree

cost of BFS O(|V | + |E|)

BFS can find a shortest path from s to all other nodes (without
weight). But why?

6

DFS

The idea of a depth first search:

”deepest nodes” are visited first

data structure to use: stack

7

DFS(G, s)

1. for each u in V[G] - s

2 do visit[u] <-- ’unvisited’

3. parent[u] <-- null

4. visit[s] <-- ’visited’

6. S <-- MakeEmptyStack()

7. Push(S, s)

8. while Not IsEmptyStack(S)

9. do u <-- Pop(S)

10. visit[u] = ’visited’

11. for each v in Adj[u]

12. if visit[v] = ‘unvisited’

13. then parent[v] <-- u

14. Push(S, v)

15. return parent

8

a recursive DFS algorithm (which also generates timestamps)

DFS(G)

1. for each node u in V[G]

2. do parent[u] <-- null

3. time <-- 0

4. for each node u in V[G]

5. do if visit[u] = ’unvisited’

6. then DFS-VISIT(u)

9

DFS-VISIT(u)

1. time <-- time + 1

2. discover[u] <-- time

3. visit[u] <-- ’visited’

4. for each v in Adj[u]

5. do if visit[v] = ’unvisited’

6. then parent[v] <-- u

7. DFS-VISIT(v)

8 time <-- time + 1

8. finish[u] <-- time

running time ?

10

Properties of depth-first-search

(1) u = parent[v] iff DFS-VISIT(v) is called

(2) parenthesis structure: for any u, v exactly one of the
following three conditions holds:

(a) [discover[u], finish[u]] and [discover[v], finish[v]]

are entirely disjoint, and neither u nor v is a descendant of the

other in the search tree.

(b) [discover[u], finish[u] is contained entirely within

[discover[v], finish[v]] and u is a descendant of v, OR

(c) [discover[v], finish[v] is contained entired within

[discover[u], finish[u]] and v is a descendant of u.

11

White-Path Theorem: v is a descendant of u if and only at time
discover[u] that the search discovers u, node v can be reached
from u along a path consisting entirely of white (’unvisited’) nodes.

12

Classification of edges (for directed graphs)

(1) tree edges: those in the search tree (forest)

(2) back edges: those connecting a vertex to an ancester

(3) forward edges: those connecting a vertex to a descendant

(4) cross edges: all other edges

Theorem 22.10 In a depth-first-search of an undirected graph
G, every edge of G is either a tree edge or a back edge.

13

Topological sorting

DAG: directed acyclic graphs

example: edges ⊆ R(prerequisite, course)

reverse order of their finish time

14

Strongly connected components

Let G = (V,E) be a di-graph. A strongly connected component is a
maximal subgraph H = (VH , EH) of G such that for every two
nodes v, u ∈ VH , there is a path consisting of edges in EH from v to
u and there is a path consisting of edges in EH from u to v.

Algorithm

STRONLY-CONNECTED-COMPONENTS(G)

1. call DFS(G) to compute finish[u] for each u in V[G]

2. compute GT = transpose of G

3. call DFS(GT) (in which vertices are considered

in order of decreasing finish[u]

as computed in step 1.)

4. output the vertices of each tree in the

depth-first forest produced by step 3.

15

Properties:

(1) Component graph: GSCC = (V SCC , ESCC). GSCC is a dag.

Let C be a SCC, define finish(C) = maxu∈C finish[u].

(2) Lemma 22.14: Let C and C ′ be distinct strongly connected
components for G. If (u, v) ∈ E, where u ∈ C and v ∈ C ′, then
f(C) > f(C ′).

(3) Theorem 22.16: STRONLY-CONNECTED-COMPONENTS(G)
correctly computes the strongly connected components for a
directed graph G.

16

Others

Algorithm for computing connected components in undirected
graphs.

Reachability problem: given G = (V,E), and u, v ∈ V , is there a
path from u to v?

[Is there an SQL program that can solve Reachability problem?]

17

Chapter 23. Minimum Spanning Trees

spanning trees (MST)

MST: given a connected, undirected graph G = (V,E) with
w : E → R, find a spanning tree T such that

W (T) =
∑

(u,v)∈T

w(u, v) is the minimum

Two greedy algorithms: (1) Kruskal’s and (2) Prim’s based on a
generic MST algorithm.

The idea: growing an MST by adding one edge to A at a time
until A forms a spanning tree.

But which edge to add??

18

Growing an MST

GENERIC-MST(G,w)

1. A <-- empty

2. while A does not form a spanning tree

3. do find an edge (u, v) that is safe for A

4. A <-- A U {(u, v)}

5. return A

loop invariant: A is a subset of some MST

safe edge: one does not cause a cycle while maintaining the
invariant

19

cut: (S, V − S) is a partition of V

crossing: (u, v) crosses cut (S, V − S) if u and v are in S and V − S

respectively (or if v and u are in S and V − S respectively)

respecting: a cut respects a set A of edges if no edge in A crosses
the cut.

light edge: an edge is a light edge crossing a cut if its weight is the
minimum of any edge crossing the cut.

Theorem 23.1 Let G = (V,E) Let A be a subset of E that is
included in some MST for G, let (S, V − S) be any cut of G that
respect A, and let (u, v) be a light edge crossing the cut. Then edge
(u, v) is safe for A.

Proof: (1) does not form a cycle; (2) A is still a subset of some MST

20

Kruskal’s algorithm for MST

MST-KRUSKAL(G,w)

1. A <-- empty

2. for each vertex v in V[G]

3 do MAKE-SET(v)

4. sort E into nondecreasing order by weight w

5. for each edge (u, v) in E, taken in order

6. do if FIND-SET(u) <> FIND-SET(v)

7. then A <-- A U {(u, v)}

8. UNION(u, v)

9 return A

disjoint-set data structure and operations:

MAKE-SET, FIND-SET and UNION

21

running time: O(|E| log |V |)

22

Prim’s algorithm for MST

MST-PTIM(G, w, r)

1. for each u in V[G]

2. do key[u] <-- infinite

3. parent[u] <-- NULL

4. key[r] <-- 0

5. Q <-- V[G]

6. while Q is not empty

7. do u <-- EXTRACT-MIN(Q)

8. for each v in Adj[u]

9. do if v in Q and w(u,v) < key[v]

10. then parent[v] <-- u

11. key[v] <-- w(u, v)

12. return parent

23

Priority queue: Q

running time? O(|E| log |V |).

24

UNKNOWN(G, w, r)

1. for each u in V[G]

2. do key[u] <-- infinite

3. parent[u] <-- NULL

4. key[r] <-- 0

5. Q <-- V[G]

6. while Q is not empty

7. do u <-- EXTRACT-MIN(Q)

8. for each v in Adj[u]

9. do if w(u,v) + key[u] < key[v]

10. then parent[v] <-- u

11. key[v] <-- w(u, v) + key[u]

12. return parent

25

Chapter 24. Single-source shortest paths

single source: s

weighted edges: w(u, v) ∈ R

path weight: w(p) =
∑k

i=1 w(vi−1, vi)

shortest path weight:

δ(u, v) = min{w(p) : p is a path from u to v}

Single-source shortest paths: from s to each vertex v ∈ V

Single-destination shortest paths: to vertex t from each vertex

v ∈ V

Single-pair shortest path: from s to t

All-pairs shortest paths: from s to t for all pairs s, t ∈ V .

26

Lemma 24.1 (subpaths of shortest paths are shortest paths)

Given a weighted directed graph G = (V < E) with weight function
w. Let p = (v1, v2, · · · , vk) be a shortest path from v1 to vk. Then
pi,j = (vi, · · · , vj) is a shorest path from vi to vj .

negative weights:

cycles: negative weight cycles, positive weight cycles, 0 weight
cycles

representing shortest paths: predecessor π

shortest path tree:

27

Technique: relaxation

Let d[v] be an upper bound on the weight of a shortest path from s

to v, initialized ∞.

The process of relaxing edge (u, v): improve d[v] so far by going
through u, and update d[v] and π[v].

28

Bellman-Ford algorithm

BELLMAN-FORD((G, w, s)

1. for each vertex v in V[G] {initialization}

2. do d[v] <-- infinite

3. pi[v] <-- null

4. d[s] <-- 0

5. for i <-- 1 to |V| -1 { relaxation}

6. do for each edge (u, v) in E[G]

7. do if d[v] > d[u] + w(u, v)

8. then d[v] <-- d[u] + w(u, v)

9. pi[v] <-- u

10. for each edge (u, v) in E[G] {checking negative}

11. do if d[v] > d[u] + w(u, v) {weight cycle}

12. then return FALSE

29

13. return TRUE

running time : O(|V ||E|)

Lemma 24.2 Let G = (V, E) be a weighted, directed graph with source

s and weight function w : E → R and assume that G contains no

negative weight cycles that can be reached from s. Then after |V | − 1

iterations of line 5 in the algorithm, d[v] = δ(s, v) for all vertices v that

are reachable from s.

30

Theorem 24.4 Bellman-Ford algorithm is correct on weighted, directed

graphs.

(1) Lemma 24.2 shows the correctness on weighted, directed graphs

without negative weight cycles.

(2) we need to show, when G contains a negative weight cycle reachable

from s, the algorithm returns FALSE

assume the cycle to be c = (v0, v1, · · · , vk), where v0 = vk and

k∑

i=1

w(vi−1, vi) < 0

Then because d[vi] ≤ d[vi−1] + w(vi−1, vi)

k∑

i=1

d[vi] ≤
k∑

i=1

(d[vi−1] + w(vi−1, vi))

31

≤
k∑

i=1

d[vi−1] +

k∑

i=1

w(vi−1, vi)

But
k∑

i=1

d[vi] =

k∑

i=1

d[vi−1]

implying
k∑

i=1

w(vi−1, vi) ≥ 0.

32

Single-source shorest paths on DAG

DAG-SHORTEST PATHS(G, w, s)

1. topologically sort the vertices of G

2. for each vertex v in V[G] {initialization}

3. do d[v] <-- infinite

4. pi[v] <-- null

5. d[s] <-- 0

6. for each u in V[G], in topologically sorted order

7. do for each vertex v in Adj[u]

8. do if d[v] > d[u] + w(u, v)

9. then d[v] <-- d[u] + w(u, v)

10. pi[v] <-- u

11. return d and pi

running time: O(V + E)

33

Dijkstra’s algorithm On weighted, directed graphs in which each edge

has non-negative weight.

DIJKSTRA(G, w, s)

1. for each vertex v in V[G] {initialization}

2. do d[v] <-- infinite

3. pi[v] <-- null

4. d[s] <-- 0

5. S <-- empty

6. Q <-- V[G]

7. while Q is not empty

8. do u <-- EXTRACT-MIN(Q)

9. S <-- S U {u}

10. for each vertex v in Adj[u]

11. do if d[v] > d[u] + w(u, v)

12. then d[v] <-- d[u] + w(u, v)

34

13. pi[v] <-- u

running time: O((V + E)lgV)

Correctness of the algorithm: Theorem 24.6, proof by the use of

following loop invariant for the while loop:

d[v] = δ(s, v) for each v ∈ S.

Can it deal with negative weight edges?

35

