Part II. Sorting and order statistics
Chapter 6. Heapsort, the use of priority queue
Chapter 7. Quicksort, analysis

Chapter 8. Sorting in linear time, lower bounds

Chapter 9. Medians and order statistics

Chapter 6. Heapsort
heaps
LEFT, RIGHT, PARENT

heapsort
BUILD-MAX-HEAP(A)
MAX-HEAPIFY(A, i)
HEAPSORT(A)

heaps as priority queues

HEAP-MAXIMUM(A)
HEAP-EXTRACT-MAX(A)
HEAP-INCREASE-KEY (a, I, key)
MAX-HEAP-INSERT(A, key)

PARENT(i) return [i/2]
LEFT(i) return 2i
RIGHT(i) return 2¢ + 1

Max-heap property: every child node is less than or equal to it
parent node.

HEAPSORT (A)
1. BUILD-MAX-HEAP(A)
2. for i <- length[A] down to 2

3. do exchange A[1] <--> A[i]
4. heap-size[A] <- heap-size[A] -1
5 MAX-HEAPIFY(A, 1)

analysis of time

BUILD-MAX-HEAP (A)

1. heap-size[A] <-- length[A]

2. for i <-- length[A]/2 downto 1
3. do MAX-HEAPIFY(A, i)

MAX-HEAPIFY(A, i)
.1 <-- LEFT[i]
.r <-— RIGHT[i]
.if 1 <= heap-size[A] and A[1] > A[i]
then largest <-- 1

1

2

3

4

5. else largest <-- 1

6.if r <= heap-size[A] and Alr] > A[largest]
7 then largest <-- r
8.if largest =\= 1

9 then exchange A[i] <-> A[largest]

10. MAX-HEAPIFY(A, largest)

HEAP-MAXIMUM(A)
1. return A[1]

HEAP-EXTRACT-MAX (A)
if heap-sizel[A] <1
then error "heap underflow"
. max <—— A[1]
. A[1] <-- A[heap-size[A]]
. heap-size[A] <-- heap-size[A] -1
. MAX-HEAPIFY(A, 1)

. return max

~N O O b W N -

Chapter 7. Quicksort

the basic idea of ”quicksort”

the algorithm details

average case running time (probabilistic analysis)
randomized algorithm

variants

divide-and-conquer for quicksort

divide: partition list A[p,r| into two sublists A[p,q — 1] and
Alg + 1, 7] such that

() Ali] < Alg] for all i = p, -, — 1
(b) Ali] > Alg] for all i =q+1,---,7

conquer: sort Alp,q — 1] and Alq + 1, r] recursively.

combine: no further work is needed.

QUICKSORT(A, p, r)

1. if p< r

2 then q <-- PARTITION(A, p, r)
3. QUICKSORT(A, p, q-1)

4 QUICKSORT(A, g+1, 1)

1. If p<=k<=i, then Alkl<=x
2. If i+1<=k<=j-1, then A[k]>x
3. If k=r, then Al[k]=x

PARTITION(A, p, r)
. x <—— A[r]
i <-- p-1
. for j <-—— p to r-1
do if A[j] <= x

then i <-- 1 +1

exchange A[i] <--> A[j]

. exchange A[i+1] <--> A[r]

. return i+1

00 N O O b W N -

example: Figure 7.1 (page 147)

Is there an easier way (not necessarily the most efficient way) to do
partition?

10

analysis of performance

T(n—1)+06(n)
best case : T'(n) =T(|n/2])+T(|n/2] — 1)+ O(n)

worst case partitioning: T'(n)

balanced partitioning:
T(n) =T(9n/10) +T(n/10) + O(n)
using recursive tree method, it can be shown that

T(n) = O(nlog;yn) and
T'(n) = Q(n log19/9 1)

Therefore, T'(n) = 8(nlogn).

11

average case performance

probabilistic analysis: assume that lists to be sorted are random
lists.

An intuition that PARTITION should give a balanced partition
with a high probability on a random list:

(1) Consider a list of n elements in which every element has equal
chance to be in position 7, ¢ = 1,2,...,n. That is, for any position
j and element Ali,

Pr(rank(Ali]) =j) =1/n

(2) Then the probability for any chosen pivot to partition the list
into two lists of sizes n/10 and 9n/10 is 80%

(3) We can say that most (i.e., 80%) of the time QQUICKSORT runs
O(nlogn).

12

Analysis Method 1: taking the average
The pivot could be at any of these positions 1,2,...,n — 1,n. Then

T(n)=1/n* [(T(G —1)+T(n—j)) +2T(n—1)] +cn

Consider two categories of partitions:
“good partition” (n/4 < j < 3n/4)
“bad partition” (1 <j<n/4 or 3n/4d<j<n)

T(n) is then the sum of two terms (exercise).

One can use the substitution or recursive tree method to prove
T(n) =0O(nlogn).

13

Analysis Method 2: randomized quicksort

RANDOMIZED-PARTITIONC(CA, p, T)
1. i <-- random(p, r)

2. exchange Alr] <--> A[i]
3. return PARTITION(CA, p, 1)

rename elements in A as
21, -, 2y With z; being the ith smallest element, and

Zij ={zis %1
Define: X;; =1 iff 2z; is compared to z;

and X = X0 2% i+1Xij the number of comparisons.

14

E[X] — E?;lz?:iHE[Xij]

= 375", Pr(z; is compared to z;)

Event z; is compared to z; occurs when z; is chosen as a pivot or z;

is chosen to be a pivot. The chance of each element to be chosen is

equally likely.

Note: that z; or z; is chosen has nothing do with any element
outside of Z;; being chosen. Therefore,

Pr(z; is compared to z;)
=2/|Zi| =2/(j —i+1)
Then E[X] = X!"'S7712/(k + 1) = O(nlogy n)

15

Chapter 8 Lower bounds and sorting in linear time

Deriving lower bounds

Comparison-based computational model

(1) Prove that ”finding the max” among n elements needs at least
(n — 1) comparisons.

(2) Prove that ”sorting n elements” needs €2(nlogn) comparisons.

16

sorting in linear time

A lower bound for sorting:

decision tree — a full binary tree (every node has zero or two
children) modeling algorithms/computations

each internal node denotes (x; < z;), with two outcomes
each leaf denotes a possible output of the algorithm
Claim 1: total number of leaves is n!.

Claim 2: the maximum number of leaves for a binary tree of height
h is 2P,

17

Theorem: Sorting needs €2(nlogn) comparisons on

comparison-based computation models.

Prove: The longest path from the root to a leave is Q(logn!). i.e.,
the number of comparisons needed in the worst case is (2(log(n!)).

n!=n(n—-1)(n—n/2)(n —n/2—1)---2x 1> (n/2)"/227/2~1
> (n)"/? /2.

or by Stirling’s formula:

n! = v2rn(n/e)"(1+ O(1/n))

Q(log(n!)) = Q(nlogn)

18

COUNT SORT:

COUNTING-SORT(A, B, k)

1. for 1 <—-0 to k¥ {k is the largest element}
2 do C[i] <-- 0

3. for j = 1 to length[A]

4 do C[A[j]] <-- C[A[j]] + 1

5. {C[i] contains the number of elements = i}
6. for i <-——- 1 to k

4 do C[i]=C[i] + C[i-1]

8. {C[i] contains the number of elements <
9. for j <—- length[A] downto 1

10. {either upwards or downwards is ok}

11. do BIC[A[j]]] <—- A[j]

12. C[A[j]] <-- C[A[j]] -1

i}

example: A: 25302303 C: 202301

19

C: 224778

Analysis? T'(n) = O(k + n)

20

RADIX SORT:

329 720 720 329
457 355 329 355
657 436 436 436
839 457 839 457
436 657 355 657
720 329 457 720
355 839 657 839

RADIX-SORT(A, d)
1. for i <—— 1 to d {note the direction!)
2. sort A on digit 1

Lemma 8.4: Given n b-bit numbers and any positive r < b.
RADIX-SORT uses O((b/r)(n + 2")) time.

Proof: each number is of [b/r] digits of r bits (binary bits) each.

21

BUCKET SORT: assuming uniform distribution of inputs

BUCKET_SORT (A)

1. n <-- length[A]

2. for i <——-— 1 ton

3 do insert A[i] into list B[mnA[i]l]

4, for i <-- 0 to n-1

5 do sort list B[i] with insertion sort

6. concatenate the list B[0], B[1], ..., B[n-1]

22

e.g.: A: .78 .17

© 00 N O O b W N —~ O
~

analysis? average time

.39

.12

.21
.39

.68
.72

.94

.26 .72 .94 .21

->
>

->

17
.23 >

.78

23

.26

.12 .23 .68

Chapter 9. Medians and order statistics

The selection problem
Input: A set A of n (distinct) numbers and i, 1 < i < n;
Output: = € A, the ith smallest element in A.

Selection in expected linear time (but worst case ©(n?))

Selection in worst case linear time

24

Selection in expected linear time

RANDOMIZED-SELECT(A, p, r, 1)
1. if p=r

2. then return Alpl

3. q <- RANDOMIZED-PARTITION(A, p, r)

4. k<-qg-p +1

o. 1if 1 =k

6 then return Al[q]

7. else if 1 < k

8 then return RANDOMIZED-SELECT(A, p, g-1, i)
9. else return RANDOMIZED-SELECT(A, g+1, r, i-k)

analysis?

worst case running time ©(n?).

25

average case (expected time): E[T'(n)]

Note: Pr(xj is the pivot) = 1/n

Define X, = 1 iff Alp..q| has exactly k elements.
Then E[Xi] =1/n and X = 1 for exactly one value of k.
T(n) <X Xi(T(max{k —1,n—k})+ O(n))
E[T(n)] =X7_1E| X - T(max{k — 1,n — k})| + O(n)
=37_;1/n- E[T(max{k — 1,n — k})] + O(n)

max{k —1l,n—k}=k—1if k>n/2
max{k —1,n—k}=n—Fkif k <n/2
BIT(n)] < 2/nS=) ,E[T(R)] + O(n)
Solving the recurrence:

We have E[T(n)] = O(n).

26

Selection in worst case linear time

deterministically finds a good partition:

(1) divide n elements into n/5 groups of 5 elements
(2) find the median of each group

(3) recursively find the median x of medians

(4) use x as the pivot

why this is a good partition?

27

Note: the number of elements < z is at least:
3(1/2[n/5] —2) > 3n/10 — 6
similarly, the number of elements > x is at least:

3(1/2[n/5] —2) > 3n/10 — 6

T(n) <T([n/5])+T([Tn/10+6]) + O(n)

when n > 140

28

