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Chapter 6. Heapsort
heaps
LEFT, RIGHT, PARENT

heapsort
BUILD-MAX-HEAP(A)
MAX-HEAPIFY(A, i)
HEAPSORT(A)

heaps as priority queues

HEAP-MAXIMUM(A)
HEAP-EXTRACT-MAX(A)
HEAP-INCREASE-KEY (a, I, key)
MAX-HEAP-INSERT(A, key)




PARENT(i) return [i/2]
LEFT(i) return 2i
RIGHT(i) return 2¢ + 1

Max-heap property: every child node is less than or equal to it
parent node.



HEAPSORT (A)
1. BUILD-MAX-HEAP(A)
2. for i <- length[A] down to 2

3. do exchange A[1] <--> A[i]
4. heap-size[A] <- heap-size[A] -1
5 MAX-HEAPIFY(A, 1)

analysis of time



BUILD-MAX-HEAP (A)

1. heap-size[A] <-- length[A]

2. for i <-- length[A]/2 downto 1
3. do MAX-HEAPIFY(A, i)

MAX-HEAPIFY(A, i)
.1 <-- LEFT[i]
.r <-— RIGHT[i]
.if 1 <= heap-size[A] and A[1] > A[i]
then largest <-- 1

1

2

3

4

5. else largest <-- 1

6.if r <= heap-size[A] and Alr] > A[largest]
7 then largest <-- r
8.if largest =\= 1

9 then exchange A[i] <-> A[largest]

10. MAX-HEAPIFY(A, largest)



HEAP-MAXIMUM(A)
1. return A[1]

HEAP-EXTRACT-MAX (A)
if heap-sizel[A] <1
then error "heap underflow"
. max <—— A[1]
. A[1] <-- A[heap-size[A]]
. heap-size[A] <-- heap-size[A] -1
. MAX-HEAPIFY(A, 1)

. return max
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Chapter 7. Quicksort

the basic idea of ”quicksort”

the algorithm details

average case running time (probabilistic analysis)
randomized algorithm

variants



divide-and-conquer for quicksort

divide: partition list A[p,r| into two sublists A[p,q — 1] and
Alg + 1, 7] such that

() Ali] < Alg] for all i = p, -, — 1
(b) Ali] > Alg] for all i =q+1,---,7

conquer: sort Alp,q — 1] and Alq + 1, r] recursively.

combine: no further work is needed.

QUICKSORT(A, p, r)

1. if p< r

2 then q <-- PARTITION(A, p, r)
3. QUICKSORT(A, p, q-1)

4 QUICKSORT(A, g+1, 1)



1. If p<=k<=i, then Alkl<=x
2. If i+1<=k<=j-1, then A[k]>x
3. If k=r, then Al[k]=x



PARTITION(A, p, r)
. x <—— A[r]
i <-- p-1
. for j <-—— p to r-1
do if A[j] <= x

then i <-- 1 +1

exchange A[i] <--> A[j]

. exchange A[i+1] <--> A[r]

. return i+1
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example: Figure 7.1 (page 147)

Is there an easier way (not necessarily the most efficient way) to do
partition?
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analysis of performance

T(n—1)+06(n)
best case : T'(n) =T(|n/2])+T(|n/2] — 1)+ O(n)

worst case partitioning: T'(n)

balanced partitioning:
T(n) =T(9n/10) +T(n/10) + O(n)
using recursive tree method, it can be shown that

T(n) = O(nlog;yn) and
T'(n) = Q(n log19/9 1)

Therefore, T'(n) = 8(nlogn).
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average case performance

probabilistic analysis: assume that lists to be sorted are random
lists.

An intuition that PARTITION should give a balanced partition
with a high probability on a random list:

(1) Consider a list of n elements in which every element has equal
chance to be in position 7, ¢ = 1,2,...,n. That is, for any position
j and element Ali,

Pr(rank(Ali]) =j) =1/n

(2) Then the probability for any chosen pivot to partition the list
into two lists of sizes n/10 and 9n/10 is 80%

(3) We can say that most (i.e., 80%) of the time QQUICKSORT runs
O(nlogn).
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Analysis Method 1: taking the average
The pivot could be at any of these positions 1,2,...,n — 1,n. Then

T(n)=1/n* [ (T(G —1)+T(n—j)) +2T(n—1)] +cn

Consider two categories of partitions:
“good partition” (n/4 < j < 3n/4)
“bad partition” (1 <j<n/4 or 3n/4d<j<n)

T(n) is then the sum of two terms (exercise).

One can use the substitution or recursive tree method to prove
T(n) =0O(nlogn).
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Analysis Method 2: randomized quicksort

RANDOMIZED-PARTITIONC(CA, p, T)
1. i <-- random(p, r)

2. exchange Alr] <--> A[i]
3. return PARTITION(CA, p, 1)

rename elements in A as
21, -, 2y With z; being the ith smallest element, and

Zij ={zis %1
Define: X;; =1 iff 2z; is compared to z;

and X = X0 2% i+1Xij the number of comparisons.
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E[X] — E?;lz?:iHE[Xij]

= 375", Pr(z; is compared to z;)

Event z; is compared to z; occurs when z; is chosen as a pivot or z;

is chosen to be a pivot. The chance of each element to be chosen is

equally likely.

Note: that z; or z; is chosen has nothing do with any element
outside of Z;; being chosen. Therefore,

Pr(z; is compared to z;)
=2/|Zi| =2/(j —i+1)
Then E[X] = X!"'S7712/(k + 1) = O(nlogy n)
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Chapter 8 Lower bounds and sorting in linear time

Deriving lower bounds

Comparison-based computational model

(1) Prove that ”finding the max” among n elements needs at least
(n — 1) comparisons.

(2) Prove that ”sorting n elements” needs €2(nlogn) comparisons.

16



sorting in linear time

A lower bound for sorting:

decision tree — a full binary tree (every node has zero or two
children) modeling algorithms/computations

each internal node denotes (x; < z;), with two outcomes
each leaf denotes a possible output of the algorithm
Claim 1: total number of leaves is n!.

Claim 2: the maximum number of leaves for a binary tree of height
h is 2P,
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Theorem: Sorting needs €2(nlogn) comparisons on

comparison-based computation models.

Prove: The longest path from the root to a leave is Q(logn!). i.e.,
the number of comparisons needed in the worst case is (2(log(n!)).

n!=n(n—-1)(n—n/2)(n —n/2—1)---2x 1> (n/2)"/227/2~1
> (n)"/? /2.

or by Stirling’s formula:

n! = v2rn(n/e)"(1+ O(1/n))

Q(log(n!)) = Q(nlogn)

18



COUNT SORT:

COUNTING-SORT(A, B, k)

1. for 1 <—-0 to k¥ {k is the largest element}
2 do C[i] <-- 0

3. for j = 1 to length[A]

4 do C[A[j]] <-- C[A[j]] + 1

5. {C[i] contains the number of elements = i}
6. for i <-——- 1 to k

4 do C[i]=C[i] + C[i-1]

8. {C[i] contains the number of elements <
9. for j <—- length[A] downto 1

10. {either upwards or downwards is ok}

11. do BIC[A[j]]] <—- A[j]

12. C[A[j]] <-- C[A[j]] -1

i}

example: A: 25302303 C: 202301
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Analysis? T'(n) = O(k + n)
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RADIX SORT:

329 720 720 329
457 355 329 355
657 436 436 436
839 457 839 457
436 657 355 657
720 329 457 720
355 839 657 839

RADIX-SORT(A, d)
1. for i <—— 1 to d {note the direction!)
2. sort A on digit 1

Lemma 8.4: Given n b-bit numbers and any positive r < b.
RADIX-SORT uses O((b/r)(n + 2")) time.

Proof: each number is of [b/r] digits of r bits (binary bits) each.
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BUCKET SORT: assuming uniform distribution of inputs

BUCKET_SORT (A)

1. n <-- length[A]

2. for i <——-— 1 ton

3 do insert A[i] into list B[mnA[i]l]

4, for i <-- 0 to n-1

5 do sort list B[i] with insertion sort

6. concatenate the list B[0], B[1], ..., B[n-1]
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e.g.: A: .78 .17
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analysis? average time

.39

.12

.21
.39

.68
.72

.94

.26 .72 .94 .21

->
>

->

17
.23 >

.78
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.26

.12 .23 .68



Chapter 9. Medians and order statistics

The selection problem
Input: A set A of n (distinct) numbers and i, 1 < i < n;
Output: = € A, the ith smallest element in A.

Selection in expected linear time (but worst case ©(n?))

Selection in worst case linear time
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Selection in expected linear time

RANDOMIZED-SELECT(A, p, r, 1)
1. if p=r

2. then return Alpl

3. q <- RANDOMIZED-PARTITION(A, p, r)

4. k<-qg-p +1

o. 1if 1 =k

6 then return Al[q]

7. else if 1 < k

8 then return RANDOMIZED-SELECT(A, p, g-1, i)
9. else return RANDOMIZED-SELECT(A, g+1, r, i-k)

analysis?

worst case running time ©(n?).
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average case (expected time): E[T'(n)]

Note: Pr(xj is the pivot ) = 1/n

Define X, = 1 iff Alp..q| has exactly k elements.
Then E[Xi] =1/n and X = 1 for exactly one value of k.
T(n) <X Xi(T(max{k —1,n—k})+ O(n))
E[T(n)] =X7_1E| X - T(max{k — 1,n — k})| + O(n)
=37_;1/n- E[T(max{k — 1,n — k})] + O(n)

max{k —1l,n—k}=k—1if k>n/2
max{k —1,n—k}=n—Fkif k <n/2
BIT(n)] < 2/nS=) ,E[T(R)] + O(n)
Solving the recurrence:

We have E[T(n)] = O(n).
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Selection in worst case linear time

deterministically finds a good partition:

(1) divide n elements into n/5 groups of 5 elements
(2) find the median of each group

(3) recursively find the median x of medians

(4) use x as the pivot

why this is a good partition?
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Note: the number of elements < z is at least:
3(1/2[n/5] —2) > 3n/10 — 6
similarly, the number of elements > x is at least:

3(1/2[n/5] —2) > 3n/10 — 6

T(n) <T([n/5])+T([Tn/10+6]) + O(n)

when n > 140
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