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What is the course about

• This course is about three traditionally 
central areas of the theory of computation: 
Automata, Computability, and Complexity

• Links to questions:
– What are the fundamental capabilities and 

limitations of computers?
– What makes some problems computationally 

hard and others easy?
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Complexity, Computability, and 
Automata

• Complexity theory: 
– to classify problems as easy ones and hard ones. 
– i.e., the sorting problem is easy, while scheduling 

problem is much harder;
• Computability theory: 

– to classify solvable and not solvable problems
– i.e., determining whether a mathematical statement is 

true or false



Complexity, Computability, and 
Automata (cont’d)

• Automata theory: 
– deals with the definitions and properties of 

mathematical models of computation;
– allows practice with formal definitions of 

computation
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Sets

• Sets: a group of objects (elements or 
members) represented as a unit
– Infinite set: contains infinitely many elements;
– Subset: set A is a subset of set B if all 

members of A are also members of B;
– Proper subset: if A is a subset of B and not 

equal to B;
– Empty set : a set with zero members;
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Sets (cont’d)
– Intersection
– Union
– Complement
– Power set
– Cartesian product of k sets
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Strings and Languages
• Alphabet – a nonempty finite set of symbols. 

– Notation: Σ . 
– Examples: 

• Binary alphabet {0,1}
• English alphabet {a, b, c,….}

• String over an alphabet Σ - a finite sequence of 
symbols from that alphabet.
– 00101 is a string over the binary alphabet.
– dabd is a string over the English alphabet.
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Strings and Languages (cont’d)
• Empty string: ε---the empty sequence 

with no symbols
• Concatenation of strings: Concatenation 

of two strings u.v ----- concatenate the 
symbols of u and v. 
– Notation: u.v
– Examples: 

• 01.011 = 01011
• ε.u = u.ε = u for every string u (identity property 

for concatenation)
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Strings and Languages (cont’d)
• Prefix - u is a prefix of v if there is a w such 

that v = u.w
– Examples: 

• ε is a prefix of 0 since 0 = ε.0
• pen is a prefix of pencil since pencil = pen.cil

• Suffix - u is a suffix of v if there is a w such 
that v = w.u
– Examples:

• 0 is a suffix of 0 since 0 = ε.0
• cil is a suffix of pencil since pencil=pen.cil
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Strings and Languages (cont’d)
• Substring - u is a substring of v if there are x 

and y such that v = x.u.y.
– Examples: 

• ver is a substring of the string university since 
university = uni.ver.sity

• a is a substring of a since a = ε .a. ε
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Strings and Languages (cont’d)
• Language over alphabet Σ - a set of all 

strings over Σ. 
– Notation: L. 
– Examples: 

• {0, 00, 01, 10, ...} is an infinite language over the 
binary alphabet. 

• {a, b, bd} is a finite language over the English 
alphabet. 

• Empty language – an empty set with no 
strings. Notation: Φ.



Proof, theorem, lemma

• Proof: 
– a convincing logical argument that a 

statement is true;
• Theorem: 

– A mathematical statement proved true
• Lemma (a helping theorem):

– A proved proposition 

12



Proof by contradiction

• A common form of argument for proving a 
theorem. 

• First assume that the theorem is false, 
then show that this assumption leads to an 
obviously false consequence, called 
contradiction. 
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