
2

What is the course about

• This course is about three traditionally 
central areas of the theory of computation: 
Automata, Computability, and Complexity

• Links to questions:
– What are the fundamental capabilities and 

limitations of computers?
– What makes some problems computationally 

hard and others easy?



3

Complexity, Computability, and 
Automata

• Complexity theory: 
– to classify problems as easy ones and hard ones. 
– i.e., the sorting problem is easy, while scheduling 

problem is much harder;
• Computability theory: 

– to classify solvable and not solvable problems
– i.e., determining whether a mathematical statement is 

true or false



Complexity, Computability, and 
Automata (cont’d)

• Automata theory: 
– deals with the definitions and properties of 

mathematical models of computation;
– allows practice with formal definitions of 

computation

4



Sets

• Sets: a group of objects (elements or 
members) represented as a unit
– Infinite set: contains infinitely many elements;
– Subset: set A is a subset of set B if all 

members of A are also members of B;
– Proper subset: if A is a subset of B and not 

equal to B;
– Empty set : a set with zero members;

5



Sets (cont’d)
– Intersection
– Union
– Complement
– Power set
– Cartesian product of k sets

6



7

Strings and Languages
• Alphabet – a nonempty finite set of symbols. 

– Notation: Σ . 
– Examples: 

• Binary alphabet {0,1}
• English alphabet {a, b, c,….}

• String over an alphabet Σ - a finite sequence of 
symbols from that alphabet.
– 00101 is a string over the binary alphabet.
– dabd is a string over the English alphabet.



8

Strings and Languages (cont’d)
• Empty string: ε---the empty sequence 

with no symbols
• Concatenation of strings: Concatenation 

of two strings u.v ----- concatenate the 
symbols of u and v. 
– Notation: u.v
– Examples: 

• 01.011 = 01011
• ε.u = u.ε = u for every string u (identity property 

for concatenation)



9

Strings and Languages (cont’d)
• Prefix - u is a prefix of v if there is a w such 

that v = u.w
– Examples: 

• ε is a prefix of 0 since 0 = ε.0
• pen is a prefix of pencil since pencil = pen.cil

• Suffix - u is a suffix of v if there is a w such 
that v = w.u
– Examples:

• 0 is a suffix of 0 since 0 = ε.0
• cil is a suffix of pencil since pencil=pen.cil



10

Strings and Languages (cont’d)
• Substring - u is a substring of v if there are x 

and y such that v = x.u.y.
– Examples: 

• ver is a substring of the string university since 
university = uni.ver.sity

• a is a substring of a since a = ε .a. ε



11

Strings and Languages (cont’d)
• Language over alphabet Σ - a set of all 

strings over Σ. 
– Notation: L. 
– Examples: 

• {0, 00, 01, 10, ...} is an infinite language over the 
binary alphabet. 

• {a, b, bd} is a finite language over the English 
alphabet. 

• Empty language – an empty set with no 
strings. Notation: Φ.



Proof, theorem, lemma

• Proof: 
– a convincing logical argument that a 

statement is true;
• Theorem: 

– A mathematical statement proved true
• Lemma (a helping theorem):

– A proved proposition 

12



Proof by contradiction

• A common form of argument for proving a 
theorem. 

• First assume that the theorem is false, 
then show that this assumption leads to an 
obviously false consequence, called 
contradiction. 

13


	CSCI 341 �Theory of Computation��
	What is the course about
	Complexity, Computability, and Automata
	Complexity, Computability, and Automata (cont’d)
	Sets
	Sets (cont’d)
	Strings and Languages
	Strings and Languages (cont’d)
	Strings and Languages (cont’d)
	Strings and Languages (cont’d)
	Strings and Languages (cont’d)
	Proof, theorem, lemma
	Proof by contradiction

