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Chapter 4: Decidability 
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Decidability 

A Language L is Turing-decidable if 
there is a TM M that decides it: M 
accepts every string in L and rejects 
every string in L. 
 
A recursive language is a decidable 
language. 
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Recognizability 

A Language L is Turing-recognizable 
if there is a TM M that recognizes it: M 
accepts every string in L and either 
rejects or fails to halt on every string in 
L. 
 
A recursively enumerable language is a 
recognizable language. 
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Co-Recognizability 

A Language L is co-recognizable if 
there is a TM M that recognizes L: M 
accepts every string in L and either 
rejects or fails to halt on every string in 
L. 
 
A co-r.e. language is a co-recognizable 
language. 
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Decidability of Languages related 
to Finite Automata 

 The following are all Turing decidable: 
1. ADFA = {<M, w> | M is a DFA that accepts string w} 
2. ANFA = {<M, w> | M is a NFA that accepts string w} 
3. AREX = {<M, w> | M is a regular expression that 

generates string w} 
4. EDFA = {<M> | M is a DFA that satisfies L(M) = Φ} 
5. ALLDFA = {<M> | M is a DFA that satisfies L(M) = ∑* } 
6. EQDFA = {<M, M'> | M and M' are two DFAs that 

satisfy L(M) = L(M’) }  
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ADFA = {<M, w> | M is a DFA that 
accepts w} 

We simply need to present a TM T that decides 
ADFA . 

T = “On input <M, w>, where M is a DFA and 
w is a string: 
1. Simulate M on input w. 
2. If the simulation ends in an accept state, accept. 

If it ends in a non-accepting state, reject.” 
• When T receives its input, T first determines 

whether it properly represents a DFA M and 
a string w. If not, T rejects. 



7 

ADFA = {<M, w> | DFA M accepts w} (contd.) 

• Then T carries out the simulation directly. It 
keeps track of M’s current state and current 
position in the input w by writing this 
information down on its tape. The state and 
position are updated according to the 
transition function. 

• When T finishes processing the last symbol 
of w, T accepts the input if it is in an 
accepting state; T rejects the input if it is in a 
non-accepting state. 
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ANFA = {<M, w> | NFA M accepts w} 

 We can use the previous machine T as a 
subroutine. 

TM N = “On input <M, w>, where M is a NFA, and w 
is a string: 
1. Convert NFA M to an equivalent DFA C using the 

procedure for this conversion given in Theorem 1.39. 
2. Run TM T from previous slide on input <C, w>. 
3. If T accepts, accept; otherwise reject.” 

– Running TM T in stage 2 means incorporating T 
into the design of N as a sub-procedure. 



AREX = {<M, w> | M is a regular 
expression that generates string 

w} 
TM P = “On input <M, w>, where M is a regular 

expression, and w is a string: 
1. Convert regular expression M to an equivalent NFA 

A using the procedure for this conversion given in 
Theorem 1.54. 

2. Run TM N from previous slide on input <A, w>. 
3. If N accepts, accept; otherwise reject.” 
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EDFA = {<M> | DFA M satisfies L(M) = Φ} 

• A DFA accepts some string iff reaching an 
accept state from the start state by traveling 
along the arrows of the DFA is possible. 

• TM T = “On input <M>, where M is a DFA 
1. Mark the start state of M. 
2. Repeat until no new states get marked. 
3. Mark any state that has a transition coming into it 

from any state that is already marked. 
4. If no accept state is marked, accept; otherwise 

reject.” 
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ALLDFA = {<M> | DFA M satisfies 
L(M) = ∑* } 

• Given DFA M, construct its 
complementary DFA M' such that L(M') = 
∑* - L(M).  

• Then ask whether L(M') = Φ (i.e. use the 
TM for EDFA). If L(M') = Φ, then L(M) = ∑*; 
otherwise not.  
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EQDFA = {<M, M'> | DFAs M and M' 
satisfy L(M) = L(M’) } 

• We use the proof for EDFA to prove this theorem. 
• We construct a new DFA C from M and M’, 

where C accepts only those string that are 
accepted by either M or M’ but not both. Thus, if 
M and M’ accept the same language, C will 
accept nothing. The language of C is 

  L(C) = (L(M) ∩ L(M’)) ∪ (L(M) ∩ L(M’)) 
 This expression is sometimes called symmetric 

difference of L(M) and  L(M’).  

_____ _____ 
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EQDFA = {<M, M'> | DFAs M and M' 
satisfy L(M) = L(M’) } (contd.) 

F = “On input <M, M'>, where M and M‘ are 
DFAs:  
1. Construct DFA C as described. 
2. Run TM T from EDFA on input <C>. 
3. If T accepts, accept. If T rejects, reject.” 

L(M) 
L(M’) 
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Turing Decidability of languages 
related to CFLs 

1. ACFG = {< G, w > | CFG G generates w}. 
2. APDA = {<M, w> | PDA M accepts w}. 
3. ECFG = {<G> | CFG G satisfies L(G) = Φ}. 

 The following are undecidable: 
4. ALLCFG = {<G> |  CFG G  satisfies L(G) = 

∑* }. 
5. EQCFG = {<G, G'> | CFGs G and  G' satisfy 

L(G) = L(G')}. 
6. ATM = {<M, w> | TM M accepts w}. 
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ACFG = {< G, w > | CFG G generates w} 

• One idea is to use G to go through all 
derivations to determine whether any is a 
derivation of w. This idea does not work, 
as infinitely many derivations may have to 
be tried. 

• This idea gives a Turing Machine that is a 
recognizer, but not a decider, for ACFG. 

• To make a machine that is a decider we 
need to ensure that algorithm tries only 
finitely many derivations. 
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ACFG = {< G, w > | CFG G generates w} 
(contd.) 

• TM S = “On input <G, w>, where G is a 
CFG and w is a string: 
1. Convert G to an equivalent grammar in 

Chomsky Normal Form. 
2. List all derivations with 2n-1 steps, where n 

is the length of w, except if n = 0, then 
instead list all derivations with 1 step. 

3. If any of these derivations generate w, 
accept; if not, reject.” 
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APDA = {<M, w> | PDA M accepts w} 

• Let M be a PDA and G be a CFG for CFL A. Now 
design TM R that decides APDA. G can be obtained via 
the conversion from a PDA to an equivalent CFG that is 
discussed in Chapter 2. 

• R = “On input <M, w>, where M is a PDA and w is a 
string: 

0. Construct the CFG G that is equivalent to M. 
1. Run TM S (that decides ACFG) on input <G, w> 
2. If S accepts, accept; if S rejects, reject. ” 
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ECFG = {<G> | CFG G satisfies L(G) = Φ} 

• We can not use the TM S for ACFG, because the 
algorithm might try going through all possible w’s, 
one by one. But there are infinitely many w’s to 
try, so this method could end up running forever. 

• We need to test whether the start variable can 
generate a string of terminals.  

• It determines for each variable whether that 
variable is capable of generating a string of 
terminals. 
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ECFG = {<G> | CFG G satisfies L(G) = Φ} 
(contd.) 

TM R = “On input <G>, where G is a CFG 
1. Mark all terminal symbols in G. 
2. Repeat until  no new variables get marked: 
3. Mark any variable A where G has a rule  
 A → U1U2…Uk and each symbol U1…Uk  

 has already been marked. 
4. If the start symbol is not marked, accept; 

otherwise reject. 
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Proof for ATM = {<M, w> | M accepts w} 

• Suppose that H is a decider for ATM. 
• On input <M, w>, where M is a TM and w is a 

string, H halts and accepts if M accepts w, and H 
halts and rejects if M rejects w. 

  H(<M, w>) =   accept  if M accepts w 
         reject    if M rejects w. 
• Now we construct a new TM D with H as a subroutine. D 

calls H to determine what M does when input to M is its 
own description <M>. Once D has determined this 
information, it does the opposite. 
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Proof for ATM (contd.) 

D = “On input <M>, where M is a TM: 
1. Run H on input <M, <M>>. 
2. Output the opposite of what H outputs; that is, 

if H accepts, reject; and if H rejects, accept.” 
  D(<M>) =  accept  if M does not accept <M> 
      reject    if M accepts <M>. 
 What happens when we run D with its own description 

<D> as input? In that case, we get 
  D(<D>) = accept   if D does not accept <D> 
     reject    if D accepts <D>. 
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Proof for ATM (contd.) 

• Let’s review the steps of this proof: 
– Assume that a TM H decides ATM.  
– Then use H to build a TM D that takes an input  
  <M>, where D accepts its input <M> exactly when M does not 

accept input <M>. 
– Finally, run D on itself. No matter what D does, it is forced to do 

the opposite. Thus, neither TM D nor TM H can exist. 

• The machine take the following actions, with the 
last line being the contradiction. 
– H accepts <M, w> exactly when M accepts w. 
– D rejects < M > exactly when M accepts < M >. 
– D rejects < D > exactly when D accepts < D >. 
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