
1

Chapter 4: Decidability

2

Decidability

A Language L is Turing-decidable if
there is a TM M that decides it: M
accepts every string in L and rejects
every string in L.

A recursive language is a decidable
language.

3

Recognizability

A Language L is Turing-recognizable
if there is a TM M that recognizes it: M
accepts every string in L and either
rejects or fails to halt on every string in
L.

A recursively enumerable language is a
recognizable language.

4

Co-Recognizability

A Language L is co-recognizable if
there is a TM M that recognizes L: M
accepts every string in L and either
rejects or fails to halt on every string in
L.

A co-r.e. language is a co-recognizable
language.

5

Decidability of Languages related
to Finite Automata

 The following are all Turing decidable:
1. ADFA = {<M, w> | M is a DFA that accepts string w}
2. ANFA = {<M, w> | M is a NFA that accepts string w}
3. AREX = {<M, w> | M is a regular expression that

generates string w}
4. EDFA = {<M> | M is a DFA that satisfies L(M) = Φ}
5. ALLDFA = {<M> | M is a DFA that satisfies L(M) = ∑* }
6. EQDFA = {<M, M'> | M and M' are two DFAs that

satisfy L(M) = L(M’) }

6

ADFA = {<M, w> | M is a DFA that
accepts w}

We simply need to present a TM T that decides
ADFA .

T = “On input <M, w>, where M is a DFA and
w is a string:
1. Simulate M on input w.
2. If the simulation ends in an accept state, accept.

If it ends in a non-accepting state, reject.”
• When T receives its input, T first determines

whether it properly represents a DFA M and
a string w. If not, T rejects.

7

ADFA = {<M, w> | DFA M accepts w} (contd.)

• Then T carries out the simulation directly. It
keeps track of M’s current state and current
position in the input w by writing this
information down on its tape. The state and
position are updated according to the
transition function.

• When T finishes processing the last symbol
of w, T accepts the input if it is in an
accepting state; T rejects the input if it is in a
non-accepting state.

8

ANFA = {<M, w> | NFA M accepts w}

 We can use the previous machine T as a
subroutine.

TM N = “On input <M, w>, where M is a NFA, and w
is a string:
1. Convert NFA M to an equivalent DFA C using the

procedure for this conversion given in Theorem 1.39.
2. Run TM T from previous slide on input <C, w>.
3. If T accepts, accept; otherwise reject.”

– Running TM T in stage 2 means incorporating T
into the design of N as a sub-procedure.

AREX = {<M, w> | M is a regular
expression that generates string

w}
TM P = “On input <M, w>, where M is a regular

expression, and w is a string:
1. Convert regular expression M to an equivalent NFA

A using the procedure for this conversion given in
Theorem 1.54.

2. Run TM N from previous slide on input <A, w>.
3. If N accepts, accept; otherwise reject.”

9

10

EDFA = {<M> | DFA M satisfies L(M) = Φ}

• A DFA accepts some string iff reaching an
accept state from the start state by traveling
along the arrows of the DFA is possible.

• TM T = “On input <M>, where M is a DFA
1. Mark the start state of M.
2. Repeat until no new states get marked.
3. Mark any state that has a transition coming into it

from any state that is already marked.
4. If no accept state is marked, accept; otherwise

reject.”

11

ALLDFA = {<M> | DFA M satisfies
L(M) = ∑* }

• Given DFA M, construct its
complementary DFA M' such that L(M') =
∑* - L(M).

• Then ask whether L(M') = Φ (i.e. use the
TM for EDFA). If L(M') = Φ, then L(M) = ∑*;
otherwise not.

12

EQDFA = {<M, M'> | DFAs M and M'
satisfy L(M) = L(M’) }

• We use the proof for EDFA to prove this theorem.
• We construct a new DFA C from M and M’,

where C accepts only those string that are
accepted by either M or M’ but not both. Thus, if
M and M’ accept the same language, C will
accept nothing. The language of C is

 L(C) = (L(M) ∩ L(M’)) ∪ (L(M) ∩ L(M’))
 This expression is sometimes called symmetric

difference of L(M) and L(M’).

_____ _____

13

EQDFA = {<M, M'> | DFAs M and M'
satisfy L(M) = L(M’) } (contd.)

F = “On input <M, M'>, where M and M‘ are
DFAs:
1. Construct DFA C as described.
2. Run TM T from EDFA on input <C>.
3. If T accepts, accept. If T rejects, reject.”

L(M)
L(M’)

14

Turing Decidability of languages
related to CFLs

1. ACFG = {< G, w > | CFG G generates w}.
2. APDA = {<M, w> | PDA M accepts w}.
3. ECFG = {<G> | CFG G satisfies L(G) = Φ}.

 The following are undecidable:
4. ALLCFG = {<G> | CFG G satisfies L(G) =

∑* }.
5. EQCFG = {<G, G'> | CFGs G and G' satisfy

L(G) = L(G')}.
6. ATM = {<M, w> | TM M accepts w}.

15

ACFG = {< G, w > | CFG G generates w}

• One idea is to use G to go through all
derivations to determine whether any is a
derivation of w. This idea does not work,
as infinitely many derivations may have to
be tried.

• This idea gives a Turing Machine that is a
recognizer, but not a decider, for ACFG.

• To make a machine that is a decider we
need to ensure that algorithm tries only
finitely many derivations.

16

ACFG = {< G, w > | CFG G generates w}
(contd.)

• TM S = “On input <G, w>, where G is a
CFG and w is a string:
1. Convert G to an equivalent grammar in

Chomsky Normal Form.
2. List all derivations with 2n-1 steps, where n

is the length of w, except if n = 0, then
instead list all derivations with 1 step.

3. If any of these derivations generate w,
accept; if not, reject.”

17

APDA = {<M, w> | PDA M accepts w}

• Let M be a PDA and G be a CFG for CFL A. Now
design TM R that decides APDA. G can be obtained via
the conversion from a PDA to an equivalent CFG that is
discussed in Chapter 2.

• R = “On input <M, w>, where M is a PDA and w is a
string:

0. Construct the CFG G that is equivalent to M.
1. Run TM S (that decides ACFG) on input <G, w>
2. If S accepts, accept; if S rejects, reject. ”

18

ECFG = {<G> | CFG G satisfies L(G) = Φ}

• We can not use the TM S for ACFG, because the
algorithm might try going through all possible w’s,
one by one. But there are infinitely many w’s to
try, so this method could end up running forever.

• We need to test whether the start variable can
generate a string of terminals.

• It determines for each variable whether that
variable is capable of generating a string of
terminals.

19

ECFG = {<G> | CFG G satisfies L(G) = Φ}
(contd.)

TM R = “On input <G>, where G is a CFG
1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:
3. Mark any variable A where G has a rule
 A → U1U2…Uk and each symbol U1…Uk

 has already been marked.
4. If the start symbol is not marked, accept;

otherwise reject.

20

Proof for ATM = {<M, w> | M accepts w}

• Suppose that H is a decider for ATM.
• On input <M, w>, where M is a TM and w is a

string, H halts and accepts if M accepts w, and H
halts and rejects if M rejects w.

 H(<M, w>) = accept if M accepts w
 reject if M rejects w.
• Now we construct a new TM D with H as a subroutine. D

calls H to determine what M does when input to M is its
own description <M>. Once D has determined this
information, it does the opposite.

21

Proof for ATM (contd.)

D = “On input <M>, where M is a TM:
1. Run H on input <M, <M>>.
2. Output the opposite of what H outputs; that is,

if H accepts, reject; and if H rejects, accept.”
 D(<M>) = accept if M does not accept <M>
 reject if M accepts <M>.
 What happens when we run D with its own description

<D> as input? In that case, we get
 D(<D>) = accept if D does not accept <D>
 reject if D accepts <D>.

22

Proof for ATM (contd.)

• Let’s review the steps of this proof:
– Assume that a TM H decides ATM.
– Then use H to build a TM D that takes an input
 <M>, where D accepts its input <M> exactly when M does not

accept input <M>.
– Finally, run D on itself. No matter what D does, it is forced to do

the opposite. Thus, neither TM D nor TM H can exist.

• The machine take the following actions, with the
last line being the contradiction.
– H accepts <M, w> exactly when M accepts w.
– D rejects < M > exactly when M accepts < M >.
– D rejects < D > exactly when D accepts < D >.

23

Reference

• www.cs.uh.edu/~rmverma by Dr. Rakesh
Verma.

• www.cs.unm.edu/~gemmell/500.html by
Dr. Peter Gemmell.

	Chapter 4: Decidability
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Decidability of Languages related to Finite Automata
	ADFA = {<M, w> | M is a DFA that accepts w}
	ADFA = {<M, w> | DFA M accepts w} (contd.)
	ANFA = {<M, w> | NFA M accepts w}
	AREX = {<M, w> | M is a regular expression that generates string w}
	EDFA = {<M> | DFA M satisfies L(M) = }
	ALLDFA = {<M> | DFA M satisfies L(M) = * }
	EQDFA = {<M, M'> | DFAs M and M' satisfy L(M) = L(M’) }
	EQDFA = {<M, M'> | DFAs M and M' satisfy L(M) = L(M’) } (contd.)
	Turing Decidability of languages related to CFLs
	ACFG = {< G, w > | CFG G generates w}
	ACFG = {< G, w > | CFG G generates w} (contd.)
	APDA = {<M, w> | PDA M accepts w}
	ECFG = {<G> | CFG G satisfies L(G) = }
	ECFG = {<G> | CFG G satisfies L(G) = } (contd.)
	Proof for ATM = {<M, w> | M accepts w}
	Proof for ATM (contd.)
	Proof for ATM (contd.)
	Reference

