
1

Chapter 5: Reducibility

2

Decidability

A Language L is Turing-decidable if
there is a TM M that decides it: M
accepts every string in L and rejects
every string in L.

A recursive language is a decidable
language.

3

Recognizability

A Language L is Turing-recognizable
if there is a TM M that recognizes it: M
accepts every string in L and either
rejects or fails to halt on every string in
L.

A recursively enumerable language is a
recognizable language.

4

Co-Recognizability

A Language L is co-recognizable if
there is a TM M that recognizes L: M
accepts every string in L and either
rejects or fails to halt on every string in
L.

A co-r.e. language is a co-recognizable
language.

5

Reducibility
A reduction is a way of converting one problem
to another problem in such a way that a solution
to the second problem can be used to solve the
first problem.

Proving L undecidable by reducing an
undecidable problem to L.

6

Example 1: HALTTM is
undecidable

Let
HALTTM = {<M, w>| M is a TM and M halts on
 input w}

Then HALTTM is undecidable.

7

We will show that

ATM < HALTTM

Proof: (by reduction)

8

HALTTM is undecidable
• Let’s assume for the purpose of obtaining a contradiction

that TM R decides HALTTM.

 We construct TM S to decide ATM:
 S = “On input <M, w>,
 1. Run TM R on <M, w>
 2. If R rejects, reject
 3. If R accepts, simulate M on w until it halts.
 4. If M has accepted, accept; if M has rejected, reject.”

So if R decides HALTTM, then S decides ATM. Because ATM
is undecidable, so HALTTM must be undecidable.

9

Example 2: ETM is undecidable

Let
ETM = {<M> | M is a TM and M accepts no
 inputs}

Then ETM is not decidable.

10

We will show that

ATM < ETM

Proof: (by mapping reduction)

11

Example 2: ETM is undecidable
(cont’d)

Proof:
Let’s assume for the purpose of obtaining a contradiction
that TM R decides ETM. Based on R, we can construct TM S

to decide ATM:
S = “on input <M, w>:
 1. Construct a TM M1:

M1 = “on input x:
 1. If x ≠ w, reject;
 2. If x = w, run M on w and accept x if M
 accepts w; otherwise reject x.”

 2. Run R on <M1>
 3. If R accepts, reject; if R rejects, accept.”

12

Example 3: REGULARTM
• REGULARTM={<M>| M is a TM and L(M) is a regular

language}.
• Proof: Assume TM R decides REGULARTM.Based on R,

we can construct TM S to decide ATM:
S = “on input <M, w>:
 1. construct TM M2:
 M2=“on input x:
 1. If x has the form 0n1n, accept.
 2. If x does not have this form, run M
 on input w and accept if M accepts w.”
 2. Run R on input <M2>
 3. If R accepts, accept; if R rejects, reject.”
(if M accepts w, L(M2)= ∑*, otherwise L(M2)= {0n1n})

13

A function f is computable iff some Turing
machine M, on input w, halts with f(w) on its
tape.

Computable Function

14

Mapping Reduction

Language A is mapping reducible to
language B, written A <m B, if there
is a computable function f, where for
every w,

w ∊ A f(w) ∊ B ⇔

15

L1 reduces to L2 L1 <m L2

Notation

16

Theorem

∀ L1 , L2 , if L1 <m L2 and L2 is
decidable, then L1 is decidable.

17

Proof
• Let f be the computable function for
the reduction from L1 to L2
• Let TM M2 decide L2

M1 = “On input w,
 1. Compute f(w)
 2. Run M2 on f(w) and output
 whatever M2 outputs.”

18

Proof idea: construct a TM for L1
based on the TM for L2
M1

Mf M2
w f(w) accept/reject

19

Proof
• Let Mf be a Turing Machine that
reduces L1 to L2
• Let M2 decide L2

M1 = “On input w,
1. Run Mf
2. run M2 on f(w)
3. Accept if M2 accepts; reject if M2
rejects.

20

Corollary

If L1 <m L2 and L1 is undecidable,
then L2 is undecidable.

21

Theorems

Assume that L1 <m L2,
• If L is (un)decidable, then is (un)decidable
• If L1 is undecidable, then L2 is undecidable
• If L1 is unrecognizable, then L2 is unrecognizable
• If L1 is not co-recognizable, then L2 is not
 co- recognizable
• If L2 is decidable, then L1 is decidable
• If L2 is recognizable, then L1 is recognizable
• If L2 is co-recognizable, then L1 is co-recognizable

L

22

Example 1: HALTTM is undecidable

HALTTM = {<M, w>| M is a TM and M halts on
 input w}
We prove by reduction from ATM <m HALTTM.
To prove it, we need to find a computable
function F that takes input of the form <M, w>
and returns output of the form <M’, w’>, such
that

<M, w> ∈ ATM ⇔ <M’, w’> ∈ HALTTM.

23

Example 1 (cont’d)

F =“ On input <M, w>,
 1. Construct the following machine M’.
 M’ = “On input x:
 1. Run M on x
 2. If M accepts, accept
 3. If M rejects, enter a loop.”
 2. Output <M’, w>.”

24

Example 2: ETM is undecidable

ETM = {<M> | M is a TM and M accepts no
 inputs}
We prove by reduction from ATM <m ETM.
To prove it, we need to find a computable
function F that takes input of the form <M, w>
and returns output of the form <M’>, such that

<M, w> ∈ ATM ⇔ <M’> ∈ ETM.

25

Example 2 (cont’d)

F =“ On input <M, w>,
 1. Construct the following machine M’.
 M’ = “On input x:
 1. If x≠w, reject
 2. If x=w, run M on x
 3. If M accepts, accept.”
 2. Output <M’>.”

26

Example 3: EQTM = {<M1, M2> | M1 and M2
are TMs, and L(M1)=L(M2)} is undecidable

• Need to show that EQTM is neither Turing recognizable
nor co-Turing-recognizable.

• Proof: First show that EQTM is not Turing-recognizable by
showing that ATM <m EQTM. The reduction function F
works as follows:

F = “On input <M, w>, where M is a TM and w is a string:
 1. Construct the following two machines M1 and M2.
 M1= “on any input: reject.”
 M2= “On any input: Run M on w. If it accepts,
 accept.”
 2. Output <M1, M2>.”

27

Example 3 (cont’d)
• Second show that EQTM is not Turing-

recognizable by showing that ATM <m EQTM. The
reduction function G works as follows:

G = “On input <M, w> where M is a TM and w is a
string:

 1. Construct the following two machines M1 and
 M2.
 M1= “On any input: accept.”
 M2= “On any input: Run M on w. If it accepts,
 accept.”
 2. Output <M1, M2>.”

28

Reference

• www.cs.unm.edu/~gemmell/500.html by
Dr. Peter Gemmell.

	Chapter 5: Reducibility
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	HALTTM is undecidable
	Slide Number 9
	Slide Number 10
	Example 2: ETM is undecidable �(cont’d)
	Example 3: REGULARTM
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Example 1 (cont’d)
	Slide Number 24
	Example 2 (cont’d)
	Example 3: EQTM = {<M1, M2> | M1 and M2 are TMs, and L(M1)=L(M2)} is undecidable
	Example 3 (cont’d)
	Reference

