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Chapter 5: Reducibility 
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Decidability 

A Language L is Turing-decidable if 
there is a TM M that decides it: M 
accepts every string in L and rejects 
every string in L. 
 
A recursive language is a decidable 
language. 
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Recognizability 

A Language L is Turing-recognizable 
if there is a TM M that recognizes it: M 
accepts every string in L and either 
rejects or fails to halt on every string in 
L. 
 
A recursively enumerable language is a 
recognizable language. 
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Co-Recognizability 

A Language L is co-recognizable if 
there is a TM M that recognizes L: M 
accepts every string in L and either 
rejects or fails to halt on every string in 
L. 
 
A co-r.e. language is a co-recognizable 
language. 
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Reducibility 
A reduction is a way of converting one problem 
to another problem in such a way that a solution 
to the second problem can be used to solve the 
first problem. 
 
Proving L undecidable by reducing an 
undecidable problem to L. 
 



6 

Example 1: HALTTM is 
undecidable  

Let  
HALTTM = {<M, w>|  M is a TM and M halts on 
                      input w} 

 
Then HALTTM  is undecidable. 
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We will show that  

ATM < HALTTM 

Proof: (by reduction) 
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HALTTM is undecidable  
• Let’s assume for the purpose of obtaining a contradiction 

that TM R decides HALTTM. 

     We construct TM S to decide ATM: 
   S = “On input <M, w>,  
     1. Run TM R on <M, w> 
     2. If R rejects, reject 
     3. If R accepts, simulate M on w until it halts. 
     4. If M has accepted, accept; if M has rejected, reject.” 
 
So if R decides HALTTM, then S decides ATM. Because ATM 
is undecidable, so HALTTM must be undecidable. 



9 

Example 2: ETM is undecidable  
 

Let  
ETM = {<M> | M is a TM and M accepts no 
            inputs} 

 
Then ETM is not decidable. 
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We will show that   

ATM  < ETM  

Proof: (by mapping reduction) 



11 

Example 2: ETM is undecidable  
(cont’d) 

Proof:  
Let’s assume for the purpose of obtaining a contradiction 
that TM R decides ETM. Based on R, we can construct TM S 

to decide ATM: 
S = “on input <M, w>: 
     1. Construct a TM M1: 

M1 = “on input x: 
  1. If x ≠ w, reject; 
  2. If x = w, run M on w and accept x if M 
           accepts w; otherwise reject x.” 

        2. Run R on <M1> 
     3. If R accepts, reject; if R rejects, accept.” 
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Example 3: REGULARTM  
• REGULARTM={<M>| M is a TM and L(M) is a regular 

language}. 
• Proof: Assume TM R decides REGULARTM.Based on R, 

we can construct TM S to decide ATM: 
S = “on input <M, w>: 
  1. construct TM M2: 
       M2=“on input x: 
    1. If x has the form 0n1n, accept. 
    2. If x does not have this form, run M 
       on input w and accept if M accepts w.” 
  2. Run R on input <M2> 
  3. If R accepts, accept; if R rejects, reject.” 
(if M accepts w, L(M2)= ∑*, otherwise L(M2)= {0n1n}) 
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A function f is computable iff some Turing 
machine M, on input w, halts with f(w) on its 
tape. 

Computable Function 
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Mapping Reduction 

Language A is mapping reducible to 
language B, written A <m B, if there 
is a computable function f, where for 
every w,   

w ∊ A  f(w) ∊ B  ⇔ 



15 

L1 reduces to L2 L1 <m L2 

Notation 
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Theorem 

∀ L1 , L2 ,  if L1 <m L2 and L2 is 
decidable, then L1 is decidable. 
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Proof 
•  Let f be the computable function for 
the reduction from L1 to L2   
•  Let TM M2 decide L2 

M1 = “On input w, 
 1. Compute f(w) 
 2. Run M2 on f(w) and output 
     whatever M2 outputs.” 
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Proof idea: construct a TM for L1 
based on the TM for L2  
M1 

Mf M2 
w f(w) accept/reject 
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Proof 
•  Let Mf be a Turing Machine that 
reduces L1 to L2   
•  Let M2 decide L2 

M1 = “On input w, 
1. Run Mf   
2. run M2 on f(w) 
3. Accept if M2 accepts; reject if M2 
rejects.  
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Corollary  

If L1 <m L2 and L1 is undecidable, 
then L2 is undecidable. 
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Theorems 

Assume that L1 <m L2,  
• If L is (un)decidable, then       is (un)decidable 
• If L1 is undecidable, then L2 is undecidable  
• If L1 is unrecognizable, then L2 is unrecognizable 
• If L1 is not co-recognizable, then L2 is not  
   co- recognizable 
• If L2 is decidable, then L1 is decidable 
• If L2 is recognizable, then L1 is recognizable 
• If L2 is co-recognizable, then L1 is co-recognizable 

L
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Example 1: HALTTM  is undecidable 
 

HALTTM = {<M, w>|  M is a TM and M halts on 
                      input w} 
We prove by reduction from ATM <m HALTTM.  
To prove it, we need to find a computable 
function F that takes input of the form <M, w> 
and returns output of the form <M’, w’>, such 
that 

<M, w> ∈ ATM ⇔  <M’, w’> ∈ HALTTM. 
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Example 1 (cont’d) 

F =“ On input <M, w>,  
     1. Construct the following machine M’. 
  M’ = “On input x: 
  1. Run M on x 
  2. If M accepts, accept 
  3. If M rejects, enter a loop.” 
     2. Output <M’, w>.” 
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Example 2: ETM  is undecidable 

ETM = {<M> | M is a TM and M accepts no 
            inputs} 
We prove by reduction from ATM <m ETM.  
To prove it, we need to find a computable 
function F that takes input of the form <M, w> 
and returns output of the form <M’>, such that 

<M, w> ∈ ATM ⇔  <M’> ∈ ETM. 
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Example 2 (cont’d) 

F =“ On input <M, w>,  
     1. Construct the following machine M’. 
  M’ = “On input x: 
  1. If x≠w, reject 
  2. If x=w, run M on x 
  3. If M accepts, accept.” 
     2. Output <M’>.” 
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Example 3: EQTM = {<M1, M2> | M1 and M2 
are TMs, and L(M1)=L(M2)} is undecidable 

• Need to show that EQTM is neither Turing recognizable 
nor co-Turing-recognizable. 

• Proof: First show that EQTM is not Turing-recognizable by 
showing that ATM <m EQTM. The reduction function F 
works as follows: 

F = “On input <M, w>, where M is a TM and w is a string: 
 1. Construct the following two machines M1 and M2. 
  M1= “on any input: reject.” 
  M2= “On any input: Run M on w. If it accepts, 
           accept.” 
  2. Output <M1, M2>.” 
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Example 3 (cont’d) 
• Second show that EQTM is not Turing-

recognizable by showing that ATM <m EQTM. The 
reduction function G works as follows: 

G = “On input <M, w> where M is a TM and w is a 
string: 

 1. Construct the following two machines M1 and  
       M2. 
  M1= “On any input: accept.” 
  M2= “On any input: Run M on w. If it accepts, 
   accept.” 
  2. Output <M1, M2>.” 
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Reference 

• www.cs.unm.edu/~gemmell/500.html by 
Dr. Peter Gemmell. 
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