Chapter 5: Reducibility

Decidability

A Language L is **Turing-decidable** if there is a TM M that decides it: M accepts every string in L and rejects every string in \overline{L} .

A *recursive* language is a decidable language.

Recognizability

A Language L is **Turing-recognizable** if there is a TM M that recognizes it: M accepts every string in L and either rejects or fails to halt on every string in \overline{L} .

A *recursively enumerable* language is a recognizable language.

Co-Recognizability

A Language L is **co-recognizable** if there is a TM M that recognizes \overline{L} : M accepts every string in \overline{L} and either rejects or fails to halt on every string in L.

A **co-r.e.** language is a co-recognizable language.

Reducibility

A **reduction** is a way of converting one problem to another problem in such a way that a solution to the second problem can be used to solve the first problem.

Proving L undecidable by reducing an undecidable problem to L.

Example 1: $HALT_{TM}$ is undecidable

Let $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and M halts on}$ input w $\}$

Then HALTTM is undecidable.

Proof: (by reduction)

We will show that

$A_{\!TM} \! \leq \! HALT_{TM}$

$\textbf{HALT}_{\text{TM}}$ is undecidable

- Let's assume for the purpose of obtaining a contradiction that TM R decides $HALT_{TM.}$ We construct TM S to decide A_{TM} :
 - S = "On input < M, w>,
 - 1. Run TM R on <M, w>
 - 2. If R rejects, reject
 - 3. If R accepts, simulate M on w until it halts.
 - 4. If M has accepted, accept; if M has rejected, reject."

So if R decides $HALT_{TM}$, then S decides A_{TM} . Because A_{TM} is undecidable, so $HALT_{TM}$ must be undecidable.

Example 2: E_{TM} is undecidable

Let $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and M accepts no inputs} \}$

Then ETM is not decidable.

Proof: (by mapping reduction)

We will show that

Example 2: E_{TM} is undecidable (cont'd)

Proof:

Let's assume for the purpose of obtaining a contradiction that TM R decides E_{TM} . Based on R, we can construct TM S to decide A_{TM} :

- S = "on input <M, w>:
 - 1. Construct a TM M1:
 - M1 = "on input x:
 - 1. If $x \neq w$, reject;
 - 2. If x = w, run M on w and accept x if M
 - accepts w; otherwise reject x."
 - 2. Run R on <M1>
 - 3. If R accepts, reject; if R rejects, accept."

Example 3: REGULAR_{TM}

- REGULAR_{TM}={<M>| M is a TM and L(M) is a regular language}.
- Proof: Assume TM R decides REGULAR_{TM.}Based on R, we can construct TM S to decide A_{TM} :
- S = "on input <M, w>:
 - 1. construct TM M2:

M2="on input x:

- 1. If x has the form $0^n 1^n$, accept.
- 2. If x does not have this form, run M
 - on input w and accept if M accepts w."

2. Run R on input <M2>

3. If R accepts, accept; if R rejects, reject."

(if M accepts w, $L(M2) = \sum^*$, otherwise $L(M2) = \{0^n 1^n\}$)

Computable Function

A function f is **computable** iff some Turing machine M, on input w, halts with f(w) on its tape.

Mapping Reduction

Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function *f*, where for every *w*,

 $w \in A \iff f(w) \in B$

Notation

L_1 reduces to $L_2 \longrightarrow L_1 \leq_m L_2$

Theorem

$\forall L_1, L_2, \text{ if } L_1 \leq_m L_2 \text{ and } L_2 \text{ is decidable, then } L_1 \text{ is decidable.}$

Proof

- Let f be the computable function for the reduction from L_1 to L_2
- Let TM M₂ decide L₂
 - M_1 = "On input w, 1. Compute f(w) 2. Run M_2 on f(w) and output whatever M_2 outputs."

Proof idea: construct a TM for L_1 based on the TM for L_2

Proof

- Let M_f be a Turing Machine that reduces L_1 to L_2
- Let M₂ decide L₂
 - $M_1 =$ "On input w, 1. Run M_f 2. run M_2 on f(w) 3. Accept if M_2 accepts; reject if M_2 rejects.

Corollary

If $L_1 \leq_m L_2$ and L_1 is undecidable, then L_2 is undecidable.

Theorems

Assume that $L_1 \leq_m L_{2,}$

- If L is (un)decidable, then \overline{L} is (un)decidable
- If L_1 is undecidable, then L_2 is undecidable
- If L_1 is unrecognizable, then L_2 is unrecognizable
- If L_1 is not co-recognizable, then L_2 is not co-recognizable
- If L_2 is decidable, then L_1 is decidable
- If L_2 is recognizable, then L_1 is recognizable
- If L_2 is co-recognizable, then L_1 is co-recognizable

Example 1: HALT_{TM} is undecidable

 $\begin{array}{l} HALT_{TM} = \{ <\!\!M, w\!\!>\!\!\mid M \text{ is a TM and M halts on} \\ input w \} \end{array}$

We prove by reduction from $A_{TM} \leq_m HALT_{TM.}$ To prove it, we need to find a computable function F that takes input of the form <M, w> and returns output of the form <M', w'>, such that

 $<\!\!M, w\!\!> \!\in A_{\!TM} \Leftrightarrow <\!\!M', w'\!\!> \!\in HALT_{\!TM}.$

Example 1 (cont'd)

- F =" On input <M, w>,
 - 1. Construct the following machine M'.
 - M' = "On input x:
 - 1. Run M on x
 - 2. If M accepts, accept
 - 3. If M rejects, enter a loop."
 - 2. Output <M', w>."

Example 2: E_{TM} is undecidable

 $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and M accepts no} \\ inputs \}$

We prove by reduction from $A_{TM} \leq_m E_{TM}$. To prove it, we need to find a computable function F that takes input of the form <M, w> and returns output of the form <M'>, such that <M, w> $\in A_{TM} \Leftrightarrow <M'> \in \overline{E_{TM}}$.

Example 2 (cont'd)

- F =" On input <M, w>,
 - 1. Construct the following machine M'.
 - M' = "On input x:
 - 1. If x≠w, reject
 - 2. If x=w, run M on x
 - 3. If M accepts, accept."
 - 2. Output <M'>."

Example 3: $EQ_{TM} = \{ \langle M1, M2 \rangle | M1 \text{ and } M2 \}$ are TMs, and L(M1)=L(M2) is undecidable

- Need to show that EQ_{TM} is neither Turing recognizable nor co-Turing-recognizable.
- Proof: First show that EQ_{TM} is not Turing-recognizable by showing that $A_{TM} \leq_m EQ_{TM}$. The reduction function F works as follows:
- F = "On input <M, w>, where M is a TM and w is a string:
 - 1. Construct the following two machines M1 and M2.

M1= "on any input: reject."

- M2= "On any input: Run M on w. If it accepts, accept."
- 2. Output <M1, M2>."

Example 3 (cont'd)

- Second show that EQ_{TM} is not Turingrecognizable by showing that $A_{TM} \leq_m EQ_{TM}$. The reduction function G works as follows:
- G = "On input <M, w> where M is a TM and w is a string:
 - 1. Construct the following two machines M1 and M2.
 - M1= "On any input: accept."
 - M2= "On any input: Run M on w. If it accepts, accept."
 - 2. Output <M1, M2>."

Reference

 www.cs.unm.edu/~gemmell/500.html by Dr. Peter Gemmell.