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Chapter 7: Time Complexity
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Time complexity
Let M be a deterministic Turing machine that 

halts on all inputs. The running time or 
time complexity of M is the function f: N →
N, where f(n) is the maximum number of 
steps that M uses on any input of length n. 
If f(n) is the running time of M, we say that 

• M runs in time f(n)
• M is an f(n) time Turing machine
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Big-O notation

• Let f and g be functions f, g: N → R+. 
f(n)=O(g(n)) if positive integers c and n0
exist such that for every integer n ≥ n0

f(n) ≤ cg(n)
g(n) is an asymptotic upper bound for f(n).
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Small-o notation

• Let f and g be functions f, g: N → R+. 
f(n)= o(g(n)) if for every positive integer c, 
n0 exists such that for every integer n ≥ n0

f(n) < cg(n)
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TIME(t(n)) = {L| ∃ TM M s.t. 
1)  L(M) = L, and    
2)  ∀ input w,  M halts on w in 

O(t(n)) steps (language L is decided by 
an O(t(n)) time Turing machine)}

Time complexity class
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The class P

P is the class of languages that are 
decidable in polynomial time on a 
deterministic single-tape Turing 
machine. In other words,  

P = U TIME(nk)
k
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Example 1: A language known to 
be in P

CONN ={<G>| G is a 
connected graph}
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PATH ={<G, s, t>| G is a graph, 
and s, t are two vertices. There is 
a path from s to t.}

Example 2: A language known to 
be in P
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PATH is in P 
A polynomial time algorithm M for PATH operates 

as follows:
M = “On input <G, s, t>, where G is a directed 

graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes

are marked:
3.     Scan all the edges of G. If an edge (a, b) is

found going from a marked node a to an
unmarked node b, mark node b.

4. If t is marked, accept. Otherwise, reject.”
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Every context-free language is in P

Example 3: A language known 
to be in P
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Every CFL is in P
Let G be a CFG in CNF generating the CFL L. Assume that S is the 

start variable. A polynomial time algorithm D works as follows:
D = “ On input w = w1…wn:

1. If w = ε and S → ε is a rule, accept.
2. For i = 1 to n:
3.    For each variable A:
4.       Test whether A → b is a rule, where b=wi.
5.       If so, place A in table (i, i).
6. For l = 2 to n:
7.    For i = 1 to n-l+1:
8.        Let j = i+l-1,
9.        For k = i to j-1:
10.          For each rule A →BC:
11.              If table(i, k) contains B and table(k+1, j) contains C, put A

in table(i, j). 
12. If S is in table(1, n), accept. Otherwise, reject. “   
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Verifier
A verifier for a language A is an algorithm V,
where

A = {w | V accepts <w, c> for some string c}.
The time of a verifier is measured in terms of the 

length of w: |w|.
A polynomial time verifier runs in a polynomial
time in the length of w. A language A is
polynomially verifiable if it has a polynomial time
verifier.
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The class NP, definition

NP is the class of languages that 
have polynomial time verifiers.  
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HAMPATH = {<G, s, t>| G is a directed 
graph with a Hamiltonian path from s to t} is 
in NP

Proof: the following is a NTM that decides 
HAMPATH problem in nondeterministic 
polynomial time.
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HAMPATH={<G, s, t>| G is a directed graph 
with a Hamiltonian path from s to t} is in NP
N=“On input <G, s, t>, where G is a directed graph 

with nodes s and t:
1. Write a list of m numbers, p1, …, pm, where m is the 

number of nodes in G. Each number in the list is 
nondeterministically selected to be between 1 and m.

2. Check for repetitions in the list. If any are found, reject.
3. Check whether s= p1 and t= pm . If either fail, reject.
4. For each i between 1 and m-1, check whether (pi, pi+1) 

is an edge of G. If any are not, reject. Otherwise, all 
tests have been passed, so accept.”
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Theorem

Language L is in NP iff it is 
decided by some nondeterministic 
polynomial Time Turing machine.
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Proof
( )   Let A ∈ NP and A is decided by a polynomial 

time NTM N. Let V be the polynomial time verifier for 
A that exists by the definition of NP. Assume that V is 
a TM that runs in time nk and construct N as follows:

N= “On input w of length n:
1. Nondeterministically select string c of length at most 

nk

2. Run V on input (w, c). 
3. If V accepts, accept; otherwise, reject. 
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Proof
( ) Assume that A is decided by a polynomial time 

NTM N and constructs a polynomial time verifier V as 
follows:

N= “On input <w, c>, where w and c are strings:
1. Simulate N on input w, treating each symbol of c as a 

description of the nondeterministic choice to make at 
each step.

2. If this branch of N’s computation accepts, accept; 
otherwise, reject.”
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Time classes: NTIME(f)

NTIME(t(n)) = {L| L is a language 
decided by an O(t(n)) time 
nondeterministic Turing machine}
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The class NP

NP = U NTIME(nk)
k
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Languages in NP

CLIQUE, SUBSET-SUM,
SAT, 3SAT, FACTOR, ISO,
VERTEX-COVER
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SAT = {φ:  φ is a boolean formula that has 
a satisfying assignment}

Polynomial verifier:  guess assignment to 
variables, plug into φ, then verify
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FACTOR= {(k, N):  N has a   
non-trivial factor less than k}

Polynomial verifier:  
• guess 1<d<k
• divide d by N
• determine whether the remainder is 0



Polynomial time computable 
function

• A function f is a polynomial time 
computable function if some polynomial 
time Turing machine M exists that halts 
with just f(w) on its tape, when started on 
any input w.
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Polynomial-time Reduction
A function f : ∑* → ∑* is a 
polynomial-time reduction from 
language L1 to language L2,
L1 <p L2, iff

• f is a polynomial time computable 
function.
• for all w,   

w ∈ L1 f(w) ∈ L 2
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Theorem: If A <p B and B ∈ P, then 
A ∈ P

Proof: 
Let M be the polynomial time algorithm deciding B
and f be the polynomial time reduction from A to B.
We describe a polynomial time algorithm N that 
decides A as follows.
N = “On input w:

1. Compute f(w).
2. Run M on input f(w) and output whatever M

outputs.”



P vs. NP
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NP

P
P= NP
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NP-hard

A language L is NP-hard
iff     

∀A ∈ NP,  A <p L
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NP-complete

A language L is NP-complete
iff     

1) L ∈ NP
2) L is NP-hard
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The Cook-Levin Theorem:
SAT is NP-complete

SAT ∈ P iff P = NP
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3-SAT

3-SAT = {φ(x1, x2 …xn)| φ ∈ SAT,
φ = C1 AND C2 AND … Cn

where Ci = αi1 OR αi2 OR αi3,
and ∀i,j ∃k:  αij = xk or αij = xk }

Conjunctive Normal Form
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3-SAT is NP-complete

Proof:  
1)  3-SAT ∈ NP (by guessing the assignment to variables 

and verifying that φ(x1, x2 …xn) = 1)
2) ∀L, L ∈ NP  L <p 3-SAT
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Vertex Cover
Given graph G = (V,E), a subset V1 of vertices is 
a vertex cover if each edge in E is adjacent to at 
least one vertex in V1

Vertex-Cover = {(G,k)| G has a 
vertex cover of size 
at most k}
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Directed Hamiltonian Path

Directed_HP = {(G,s,t)|  G is a directed 
graph with a path that starts at vertex s, 
ends at vertex t, and visits every vertex 
of G exactly once}
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CLIQUE

CLIQUE = {{(G, k)| ∃ S, S ⊆
VG, s.t. |S| = k, and S is fully 
connected inside G}
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SUBSET_SUM 

SUBSET_SUM =  {(A,k)|  A is a set (list) of 
integers, s.t. ∃B: B⊆A where Σw∈Bw = 
k}



37

Reference

• www.cs.unm.edu/~gemmell/500.html by 
Dr. Peter Gemmell.


	Chapter 7: Time Complexity
	Time complexity
	Big-O notation
	Small-o notation
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	PATH is in P 
	Slide Number 10
	Every CFL is in P
	Verifier
	Slide Number 13
	�HAMPATH = {<G, s, t>| G is a directed graph with a Hamiltonian path from s to t} is in NP�
	�HAMPATH={<G, s, t>| G is a directed graph with a Hamiltonian path from s to t} is in NP�
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Languages in NP�
	Slide Number 22
	Slide Number 23
	Polynomial time computable function
	Polynomial-time Reduction
	Theorem: If A <p B and B  P, then A  P
	P vs. NP
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Reference

