
1

Chapter 7: Time Complexity

2

Time complexity
Let M be a deterministic Turing machine that

halts on all inputs. The running time or
time complexity of M is the function f: N →
N, where f(n) is the maximum number of
steps that M uses on any input of length n.
If f(n) is the running time of M, we say that

• M runs in time f(n)
• M is an f(n) time Turing machine

3

Big-O notation

• Let f and g be functions f, g: N → R+.
f(n)=O(g(n)) if positive integers c and n0
exist such that for every integer n ≥ n0

f(n) ≤ cg(n)
g(n) is an asymptotic upper bound for f(n).

4

Small-o notation

• Let f and g be functions f, g: N → R+.
f(n)= o(g(n)) if for every positive integer c,
n0 exists such that for every integer n ≥ n0

f(n) < cg(n)

5

TIME(t(n)) = {L| ∃ TM M s.t.
1) L(M) = L, and
2) ∀ input w, M halts on w in

O(t(n)) steps (language L is decided by
an O(t(n)) time Turing machine)}

Time complexity class

6

The class P

P is the class of languages that are
decidable in polynomial time on a
deterministic single-tape Turing
machine. In other words,

P = U TIME(nk)
k

7

Example 1: A language known to
be in P

CONN ={<G>| G is a
connected graph}

8

PATH ={<G, s, t>| G is a graph,
and s, t are two vertices. There is
a path from s to t.}

Example 2: A language known to
be in P

9

PATH is in P
A polynomial time algorithm M for PATH operates

as follows:
M = “On input <G, s, t>, where G is a directed

graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes

are marked:
3. Scan all the edges of G. If an edge (a, b) is

found going from a marked node a to an
unmarked node b, mark node b.

4. If t is marked, accept. Otherwise, reject.”

10

Every context-free language is in P

Example 3: A language known
to be in P

11

Every CFL is in P
Let G be a CFG in CNF generating the CFL L. Assume that S is the

start variable. A polynomial time algorithm D works as follows:
D = “ On input w = w1…wn:

1. If w = ε and S → ε is a rule, accept.
2. For i = 1 to n:
3. For each variable A:
4. Test whether A → b is a rule, where b=wi.
5. If so, place A in table (i, i).
6. For l = 2 to n:
7. For i = 1 to n-l+1:
8. Let j = i+l-1,
9. For k = i to j-1:
10. For each rule A →BC:
11. If table(i, k) contains B and table(k+1, j) contains C, put A

in table(i, j).
12. If S is in table(1, n), accept. Otherwise, reject. “

12

Verifier
A verifier for a language A is an algorithm V,
where

A = {w | V accepts <w, c> for some string c}.
The time of a verifier is measured in terms of the

length of w: |w|.
A polynomial time verifier runs in a polynomial
time in the length of w. A language A is
polynomially verifiable if it has a polynomial time
verifier.

13

The class NP, definition

NP is the class of languages that
have polynomial time verifiers.

14

HAMPATH = {<G, s, t>| G is a directed
graph with a Hamiltonian path from s to t} is
in NP

Proof: the following is a NTM that decides
HAMPATH problem in nondeterministic
polynomial time.

15

HAMPATH={<G, s, t>| G is a directed graph
with a Hamiltonian path from s to t} is in NP
N=“On input <G, s, t>, where G is a directed graph

with nodes s and t:
1. Write a list of m numbers, p1, …, pm, where m is the

number of nodes in G. Each number in the list is
nondeterministically selected to be between 1 and m.

2. Check for repetitions in the list. If any are found, reject.
3. Check whether s= p1 and t= pm . If either fail, reject.
4. For each i between 1 and m-1, check whether (pi, pi+1)

is an edge of G. If any are not, reject. Otherwise, all
tests have been passed, so accept.”

16

Theorem

Language L is in NP iff it is
decided by some nondeterministic
polynomial Time Turing machine.

17

Proof
() Let A ∈ NP and A is decided by a polynomial

time NTM N. Let V be the polynomial time verifier for
A that exists by the definition of NP. Assume that V is
a TM that runs in time nk and construct N as follows:

N= “On input w of length n:
1. Nondeterministically select string c of length at most

nk

2. Run V on input (w, c).
3. If V accepts, accept; otherwise, reject.

18

Proof
() Assume that A is decided by a polynomial time

NTM N and constructs a polynomial time verifier V as
follows:

N= “On input <w, c>, where w and c are strings:
1. Simulate N on input w, treating each symbol of c as a

description of the nondeterministic choice to make at
each step.

2. If this branch of N’s computation accepts, accept;
otherwise, reject.”

19

Time classes: NTIME(f)

NTIME(t(n)) = {L| L is a language
decided by an O(t(n)) time
nondeterministic Turing machine}

20

The class NP

NP = U NTIME(nk)
k

21

Languages in NP

CLIQUE, SUBSET-SUM,
SAT, 3SAT, FACTOR, ISO,
VERTEX-COVER

22

SAT = {φ: φ is a boolean formula that has
a satisfying assignment}

Polynomial verifier: guess assignment to
variables, plug into φ, then verify

23

FACTOR= {(k, N): N has a
non-trivial factor less than k}

Polynomial verifier:
• guess 1<d<k
• divide d by N
• determine whether the remainder is 0

Polynomial time computable
function

• A function f is a polynomial time
computable function if some polynomial
time Turing machine M exists that halts
with just f(w) on its tape, when started on
any input w.

24

25

Polynomial-time Reduction
A function f : ∑* → ∑* is a
polynomial-time reduction from
language L1 to language L2,
L1 <p L2, iff

• f is a polynomial time computable
function.
• for all w,

w ∈ L1 f(w) ∈ L 2

26

Theorem: If A <p B and B ∈ P, then
A ∈ P

Proof:
Let M be the polynomial time algorithm deciding B
and f be the polynomial time reduction from A to B.
We describe a polynomial time algorithm N that
decides A as follows.
N = “On input w:

1. Compute f(w).
2. Run M on input f(w) and output whatever M

outputs.”

P vs. NP

27

NP

P
P= NP

28

NP-hard

A language L is NP-hard
iff

∀A ∈ NP, A <p L

29

NP-complete

A language L is NP-complete
iff

1) L ∈ NP
2) L is NP-hard

30

The Cook-Levin Theorem:
SAT is NP-complete

SAT ∈ P iff P = NP

31

3-SAT

3-SAT = {φ(x1, x2 …xn)| φ ∈ SAT,
φ = C1 AND C2 AND … Cn

where Ci = αi1 OR αi2 OR αi3,
and ∀i,j ∃k: αij = xk or αij = xk }

Conjunctive Normal Form

32

3-SAT is NP-complete

Proof:
1) 3-SAT ∈ NP (by guessing the assignment to variables

and verifying that φ(x1, x2 …xn) = 1)
2) ∀L, L ∈ NP L <p 3-SAT

33

Vertex Cover
Given graph G = (V,E), a subset V1 of vertices is
a vertex cover if each edge in E is adjacent to at
least one vertex in V1

Vertex-Cover = {(G,k)| G has a
vertex cover of size
at most k}

34

Directed Hamiltonian Path

Directed_HP = {(G,s,t)| G is a directed
graph with a path that starts at vertex s,
ends at vertex t, and visits every vertex
of G exactly once}

35

CLIQUE

CLIQUE = {{(G, k)| ∃ S, S ⊆
VG, s.t. |S| = k, and S is fully
connected inside G}

36

SUBSET_SUM

SUBSET_SUM = {(A,k)| A is a set (list) of
integers, s.t. ∃B: B⊆A where Σw∈Bw =
k}

37

Reference

• www.cs.unm.edu/~gemmell/500.html by
Dr. Peter Gemmell.

	Chapter 7: Time Complexity
	Time complexity
	Big-O notation
	Small-o notation
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	PATH is in P
	Slide Number 10
	Every CFL is in P
	Verifier
	Slide Number 13
	�HAMPATH = {<G, s, t>| G is a directed graph with a Hamiltonian path from s to t} is in NP�
	�HAMPATH={<G, s, t>| G is a directed graph with a Hamiltonian path from s to t} is in NP�
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Languages in NP�
	Slide Number 22
	Slide Number 23
	Polynomial time computable function
	Polynomial-time Reduction
	Theorem: If A <p B and B  P, then A  P
	P vs. NP
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Reference

