Chapter 8: Space complexity

Space Complexity

Let M be a deterministic Turing machine that halts on all inputs. The <u>space</u> <u>complexity</u> of M is the function *f:* N->N, where *f(n)* is the maximum number of tape cells that *M* scans on any input of length *n*. If the space complexity of *M* is *f(n)*, we also say that *M* runs in space *f(n)*.

Some definitions:

- SPACE(f(n))={L| L is a language that is decided by a TM M in tape space O(f(n))}
- NSPACE(f(n))={L| L is a language that is decided by a NTM N in tape space O(f(n))} •PSPACE = $\bigcup_{k=1}^{\infty}$ SPACE(n^k)

SAT ∈PSPACE

- The following is a linear space algorithm to decide SAT:
- M= "On input <φ>, where φ is a boolean formula:

1. For each truth assignment to the variables x1, ..., xm of ϕ :

- 2. Evaluate ϕ on that truth assignment.
- If φ ever evaluated to 1, accept; if not, reject."

Savitch's Theorem: SPACE($f^2(n)$) \supseteq NSPACE(f(n))

Let L be decided by NTM N in NSPACE(f(n))

Define *possible*(c1, c2, m) to be true iff N can transit from configuration c1 to c2 within *m* steps.

PSPACE completeness

Language L is PSPACE-complete iff:

- 1. L is in PSPACE
- 2. Every language L' in PSPACE is reducible to L via a polynomial time reduction

Theorem

If L is PSPACE-complete and L is in P, then P = PSPACE

TQBF = { ϕ : ϕ is a true totally quantified boolean formula}

E.g.
$$\phi = \forall x_1 \exists x_2 (x_1 \text{ OR } x_2) \text{ is in TQBF}$$

$\phi = \forall x_1 \exists x_2 (x_1 \text{ AND } x_2) \text{ is not in TQBF}$

TQBF is PSPACE-complete

1. <u>TQBF is in PSPACE:</u>

T="On input $\langle \phi \rangle$, a fully quantified boolean formula:

1. If ϕ contains no quantifiers, then it is an expression with only constants, so evaluate ϕ and accept if it is true; otherwise, reject.

2. If ϕ equals $\exists x \ \theta$, recursively call T on θ , first with 0 substituted for x and then with 1 substituted for x. If either result is accept, then accept; otherwise, reject.

3. If ϕ equals $\forall x \ \theta$, recursively call T on θ , first with 0 substituted for x and then with 1 substituted for x. If both results are accept, then accept; otherwise, reject.

L Log space and Nondeterministic Log space

- L is the class of languages that are decidable in logarithmic space on a deterministic Turing machine. In other words, L = SPACE(log(n)).
- NL is the class languages that are decidable in logarithmic space on a nondeterministic Turing machine. In other words, NL = NSPACE(log(n)).

NL-complete

L is NL-complete, iff: 1. L is in NL

2. Every language L' in NL is logspace reducible to L

PATH

PATH = {(G, s, t)| G is a directed graph with a path that starts at vertex s and ends at vertex t}

Theorem: PATH is NL-complete

Reference

 www.cs.unm.edu/~gemmell/500.html by Dr. Peter Gemmell.