
Chapter 8: Space complexity

Space Complexity

• Let M be a deterministic Turing machine
that halts on all inputs. The space
complexity of M is the function f: N->N,
where f(n) is the maximum number of tape
cells that M scans on any input of length n.
If the space complexity of M is f(n), we
also say that M runs in space f(n).

Some definitions:

• SPACE(f(n))={L| L is a language that
 is decided by a TM M in tape space
 O(f(n))}
• NSPACE(f(n))={L| L is a language that
is decided by a NTM N in tape space
O(f(n))}
•PSPACE = ∪ SPACE(nk)

k=1

∞

SAT ∈PSPACE

• The following is a linear space algorithm to
decide SAT:

• M= “On input <φ>, where φ is a boolean
formula:
1. For each truth assignment to the variables
x1, …, xm of φ:
2. Evaluate φ on that truth assignment.
3. If φ ever evaluated to 1, accept; if not,

reject.”

Savitch’s Theorem:
 SPACE(f2(n)) ⊇ NSPACE(f(n))

Let L be decided by NTM N in
NSPACE(f(n))

Define possible(c1, c2, m) to be true iff N
can transit from configuration c1 to c2 within
m steps.

PSPACE completeness

Language L is PSPACE-complete iff:

1. L is in PSPACE
2. Every language L’ in PSPACE is
reducible to L via a polynomial time
reduction

Theorem

If L is PSPACE-complete and L
is in P,

then P = PSPACE

TQBF = {φ: φ is a true totally quantified
boolean formula}

E.g. φ = ∀x1∃x2 (x1 OR x2) is in TQBF

 φ = ∀x1∃x2 (x1 AND x2) is not in TQBF

TQBF is

 PSPACE-complete
 1. TQBF is in PSPACE:

T=“On input <φ>, a fully quantified boolean formula:
1. If φ contains no quantifiers, then it is an expression with only
constants, so evaluate φ and accept if it is true; otherwise, reject.
2. If φ equals ∃x θ, recursively call T on θ, first with 0 substituted for x
and then with 1 substituted for x. If either result is accept, then accept;
otherwise, reject.
3. If φ equals ∀x θ, recursively call T on θ, first with 0 substituted for x
and then with 1 substituted for x. If both results are accept, then accept;
otherwise, reject.

L Log space and Non-
deterministic Log space

• L is the class of languages that are
decidable in logarithmic space on a
deterministic Turing machine. In other

 words, L = SPACE(log(n)) .
• NL is the class languages that are

decidable in logarithmic space on a
nondeterministic Turing machine. In other

 words, NL = NSPACE(log(n)).

NL-complete

L is NL-complete, iff:
1. L is in NL
2. Every language L’ in NL is log-

space reducible to L

PATH

PATH = {(G, s, t)| G is a directed graph
with a path that starts at vertex s and
ends at vertex t}

Theorem:
PATH is NL-complete

Reference

• www.cs.unm.edu/~gemmell/500.html by
Dr. Peter Gemmell.

	Chapter 8: Space complexity
	Space Complexity
	Slide Number 3
	SAT PSPACE
	Savitch’s Theorem:�
	PSPACE completeness
	Theorem
	Slide Number 8
	�TQBF is� PSPACE-complete�
	����L Log space and Non-deterministic Log space����
	NL-complete
	PATH
	Theorem:�PATH is NL-complete
	Reference

