Chapter 1: Regular Languages

Finite Automata

- Models for computers with a limited amount of memory
- It reads one pass through the input
- Has no capability to write

Deterministic Finite Automata (DFA)

A finite automaton is a 5-tuple (Q, Σ, δ, s, F), where
1.S is a finite set called the *states*2.Σ is a finite set called the *alphabet*3.δ:(Q x Σ - Q) is the *transition function* between states i.e., (state, symbol) ---> next state
4.s is the *start state* (one special state)
5.F ⊆ Q is the set of *accept states* (0 or more accept states)

State Diagram

q1: Start state q2: An accept state

The arrows going from one state to another are called transitions

How does a DFA work?

- An input string is placed on the tape (leftjustified).
- Each cell contains one symbol
- The reading head is placed on the leftmost cell of the tape.
- DFA begins from the start state.
- On the symbol the head points to, DFA transit from one state to the next state (may be the same state)

How does a DFA work? (contd.)

- DFA continue the transitions until the entire string is read.
 - In each step, DFA consults a transition table and changes state based on (s, σ) where
 - s current state
 - σ current symbol scanned by the head
- After reading the entire input string,
 - if DFA ends in an accept state, the input is accepted
 - if DFA ends in a non-accept state, the input is rejected.

Languages

- A language L is a subset of \sum^*
 - i.e., language {0, 01, 11} is a subset of {0,1}*
- The language accepted by a DFA D = L(D) is the set of all strings w such that D ends in an accept state on input w.
- A language is called a <u>regular language</u> if there exists a DFA that recognizes/accepts it.

$L = \{a^{2n} | n \ge 1\}$

• L={aa, aaaa, aaaaaa,}

Example: L(M) = {w in {a, b}* | w contains even number of a's}

Regular Languages

- A Language is regular iff there is a finite automaton that accepts it.
- Examples: design DFAs for the following regular languages:
 - $-\phi$
 - {ɛ}
 - $-\Sigma^*$
 - {w in $\{0,1\}^*$ | w starts with 1 and ends with 0}
 - $\{w \text{ in } \{0,1\}^* \mid \text{the second symbol of } w \text{ is } 1\}$
 - {w in {0,1}* | w contains 1010 as a substring}

Closure properties of regular languages

 The class of regular languages are closed under the <u>union</u>, intersection, and <u>complement</u> operations

Example

- Σ = {a, b}
- $L_1 = \{ w \text{ in } \Sigma^* \mid w \text{ has even number of a's} \}$
- $L_2 = \{ w \text{ in } \Sigma^* \mid w \text{ has odd number of b's} \}.$

$$-L_1 \cup L_2 = ?$$
$$-L_1 \cap L_2 = ?$$
$$-\overline{L1}$$

General construction of DFAs for the languages after union and intersection

- Let $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ be the DFA for L_1 and $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ be the DFA for L_2
 - $M = (Q, \Sigma, \delta, s, F)$ where:
 - $Q = Q_1 X Q_2$
 - $S = (S_1, S_2)$
 - Σ is the same
 - $\delta((\mathbf{q}_1, \mathbf{q}_2), \sigma) = (\delta_1(\mathbf{q}_1, \sigma), \delta_2(\mathbf{q}_2, \sigma))$
 - for Union, $F = (Q_1 X F_2) U (F_1 X Q_2)$
 - for Intersection, $F = F_1 X F_2$

DFAs for $L_1 \cup L_2$ and $L_1 \cap L_2$?

- Σ = {a, b}
- $L_1 = \{ w \text{ in } \Sigma^* \mid w \text{ has even number of a's} \}$
- $L_2 = \{ w \text{ in } \Sigma^* \mid w \text{ has odd number of b's} \}.$

Construction for Complement for DFAs

Given DFA M1 = (Q1, Σ , δ 1, s1, F1)

L(M) = Complement of L(M1)

Swap the accept and non-accept states of M1 to create M that recognizes the complement language of L1:

$$M = (Q, \Sigma, \delta, s, F)$$
$$Q = Q_1$$
$$s = s_1$$
$$F = Q - F_1$$
$$\delta = \delta_1$$

Examples

Nondeterministic Finite Automaton (NFA)

- In a DFA, for a given state and the an input symbol, the next state is fixed
- In a NFA, several choices may exist for the next state at any point.
- NFA is a generalization of DFA. A NFA allows:
 - 0 or more next states for the same (state, symbol): guessing the next state,
 - Transitions can be labeled by the empty string ϵ : changing state without reading input,
 - No transition on an input symbol.

Formal definition of NFA

- $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}.$
- NFA M = (Q, Σ , δ , s, F) where:
 - Q: finite set of states
 - $-\Sigma$: finite input alphabet
 - δ : a subset of Q X Σ_{ϵ} X Q.
 - s: the start state
 - $\mathsf{F} \subseteq \mathsf{Q}$ the set of accept states

How does an NFA work?

- String w is accepted by a NFA if there exists a sequence of guesses that lead to an accept state after reading the entire string w.
- Language accepted by a NFA is the set of all strings that are accepted by the NFA.

Example: {w in {0,1}* | the second to the last symbol of w is a 1}

NFA acceptance

• Define $\delta^*(q, w)$ as a set of states: {p | $p \in \delta^*(q, w)$ if there is a directed path from q to p labeled with w.}

$$- \,\delta^*(q_0, \,1) = \{q_0, \,q_1\}$$

$$- \,\delta^*(q_0, \,11) = \{q_0, \,q_1, \,q_2\}$$

NFA acceptance (cont'd)

- w is accepted by NFA M iff δ*(q₀, w) ∩ F is not empty.
- $L(M) = \{w \text{ in } \Sigma^* \mid w \text{ is accepted by } M\}.$

NFA vs. DFA

- Theorem: For every NFA M there is an equivalent DFA M'
 - NFA is not more powerful than DFA!
- Proof Idea:
 - DFA uses more states to get rid of the nondeterminism.

Example: Conversion from NFA to an equivalent DFA

NFA

δ	0	1
q0	{q0}	{q0,q1}
q1	{q2}	{q2}
q2	Ø	Ø

Traditional method: Conversion from NFA to an equivalent DFA

- For now, assume no transitions labeled by ϵ in the NFA (will get rid of this assumption later!)
- NFA M = (Q, Σ , Δ , s, F)
- DFA M' = (Q', Σ , δ , s', F') where:
 - $Q' = 2^{Q}$
 - -s' = s
 - F' = {q | $q \cap$ F is not empty, i.e, q contains at least one accept state from the NFA M}

$$- \delta(\{p_1, p_2, \dots, p_m\}, \sigma) = \delta^*(p_1, \sigma) \cup \delta^*(p_2, \sigma) \cup \dots \cup \delta^*(p_m, \sigma)$$

1. Traditional method for the example

δ	0		1				
q0	{q0}		{q0,q1}				
q1	{q	2}	{q2}				
q2	Ø		Ø				
δ		0	1				
Ø		Ø	Ø				
q0		q0	q0q1				
q1		q2	q2				
q2		Ø	Ø				
q0q1		q0q2	q0q1q2				
q0q2		q0	q0q1				
q1q2		q2	q2				
q0q1q2		q0q2	q0q1q2				

states Ø, q₁, q₂, and q₁q₂ can be deleted because they don't have incoming transitions: they cannot be reached from the start state q0.

2. Subset Construction Method

- For every state in the NFA, determine all <u>reachable states</u> for every input symbol (first table).
- The set of reachable states constitute a <u>single state</u> in the converted DFA (Each state in the DFA corresponds to a subset of states in the NFA).
- Starting from the start state, find <u>reachable states</u> for each <u>new DFA state</u>, until no more new states can be found.

Example

δ	0		1		
q0	{q0	}	{q0,q7	1}	
 q1	{q2	2}	{q2}		
q2	Ø		Ø		
	1				
δ		0	1		
q0		q0	q0q	1	
q0q	1	q0q2	q0q	1q2	
q0q	2	q0	q0q	1	
q0q1	q2	q0q2	q0q	1q2	

How to handle ϵ transitions?

- Define ϵ -closure of state q as $\delta^*(q, \epsilon)$.
 - notation: ε -closure(q)= $\delta^*(q, \varepsilon)$ (all the states including itself that can be reached from q via 0 or more ε 's).
- Extend ε-closure to sets of states by:
 - ε -closure({s₁, ..., s_m}) = ε -closure(s₁) \cup ... \cup ε -closure(s_m)
- For the equivalent DFA, the start state s' of the DFA is $\underline{s' = \epsilon - closure(s)}$

and,

 $\underline{\delta(\{p_{\underline{1}}, \dots, p_{\underline{m}}\}, \sigma)} = \varepsilon \text{-closure}(\Delta^{*}(p_{\underline{1}}, \sigma)) \cup \dots \cup \varepsilon \text{-closure}(\Delta^{*}(p_{\underline{m}}, \sigma))$

• Others are the same as the DFA construction from a NFA without ϵ transition.

Example: Convert a NFA with ε transitions to DFA

 ε -closure(q0)={q0,q1,q2} ε -closure(q1)={q1,q2} ε -closure(q2)={q2}

						_
δ	0	1	after	δ	0	1
q0	{q0}	Ø	ε-closure	q0	{q0, q1,q2}	Ø
q1	Ø	{q1}		q1	Ø	{q1, q2}
q2	{q2}	Ø		q2	{q2}	Ø

Using subset construction method

The start state of the NFA is q0, so the start state of the DFA is $\underline{\varepsilon}$ -closure(q0), which is **q0q1q2**. Other 3 tuples are constructed the same way as the conversion for NFAs without ε transitions.

δ	0	1		δ	0	1
q0	{q0, q1,q2}	Ø	N	q0q1q2	q0q1q2	q1q2
q1	Ø	{q1, q2}		q1q2	q2	q1q2
q2	{q2}	Ø		q2	q2	Ø
				Ø	Ø	Ø

DFA

DFA =

(The other four states do not have incoming transitions and thus cannot be reached from the start state. They are omitted here.)

Regular Operations

- <u>Regular operations:</u>
 - Union: L1 \cup L2 = { x| x \in L1 or x \in L2}
 - Concatenation: L1•L2 = $\{xy | x \in L1 \text{ and } y \in L2\}$
 - Star: L*= { $x_1x_2...x_k$ | k≥0 and each $x_i \in L$ }
- Example: if L1 = {a²ⁿ⁺¹ | n ≥ 0}, L2 = {b²ⁿ | n ≥ 0}.
 - $L1•L2 = {a^{2n+1}b^{2m} | n, m ≥ 0}$
 - $L1^* = \{a^n \mid n \ge 0\}$

Closure properties of regular languages

- Previously we discussed regular languages are closed under union, intersection, and complement.
- Regular languages are also closed under – Concatenation
 - Star

Construction for L1•L2

Construction for L1•L2 (cont'd)

Construction for Star

Regular expressions

- It is another way to view regular languages.
- Definition of <u>Regular expressions</u>:
 - a for some a in the alphabet $\boldsymbol{\Sigma}$
 - 3 –
 - φ
 - (R1 \cup R2), where R1 and R2 are regular expressions
 - (R1 R2), where R1 and R2 are regular expressions
 - (R1*), where R1 is a regular expressions

Examples of regular expressions

- Note: We drop parentheses and dots when not required, i.e.,
 - (a \cup b) is written as a \cup b
 - a b is written as ab
- Let Σ = {a, b}, the following are regular expressions:

- $\phi^{\star},$ a*, b*, ab, a \cup b
- (a \cup b)*, a*b*, (ab)*
- (a \cup b)*ab

Some exercises on regular expressions

- What is the language of ((a ∪ b)*a(a ∪ b)*)?
 Answer: L={w in {a, b}* | w contains at least one a}
- Write regular expressions for:
 - {w in {a, b}* | the length of w (the number of symbols, |w|) is even}.
 - {w in {a, b}* | w does not have ab as a substring}.
 - {w in {a, b}* | no b in w can come before any a in w}.

Answer: 1. (a ∪ b)²ⁿ, n ≥ 0; 2. b*a*; 3. a*b*

Regular expressions vs. FA's

- a) For every regular expression there is an equivalent NFA
- b) For every DFA there is an equivalent regular expression.
- Proof of (a):
 - For ϕ , the NFA is:

– For σ , the NFA is:

Example: convert regular expression (a U b)*b to NFA

Example (cont'd): NFA for (a U b)*b

Example (contd.) : NFA for (a U b)*b

Exercise

 Convert the Regular expression ab U a* to a NFA

Convert a DFA to a regular expression

• Steps:

– DFA \rightarrow GNFA \rightarrow regular expression.

- GNFA (Generalized NFA)
 - In GNFA, the labels on the transitions can be regular expressions.
- Need special GNFA that satisfies:
 (1) The start state has no incoming transitions;
 (2) Only one accept state;
 - (3) The accept state has no outgoing transitions.

Convert a DFA to a regular expression (cont'd)

- Steps:
 - 1. Convert the DFA to a special GNFA;
 - 2. Eliminate one state at a time, except the start state and the accept state, until only the start state and the accept state are left;
 - 3. Output the label on the single transition from the start state to the accept state.

Eliminating state q_{rip}

FIGURE **1.63**

Constructing an equivalent GNFA with one fewer state

This figure is taken from the book *Introduction to Theory of Computation, Michael Sipser,* page 72.

Example: convert DFA to regular expression

FIGURE 1.67 Converting a two-state DFA to an equivalent regular expression

This figure (a), (b), (c), (d) are taken from Figure 1.67 on the book *Introduction to Theory of Computation, Michael Sipser*, page 75.

Pumping Lemma

- Not all languages are regular
- Pumping lemma is used to show that some languages are not regular.

Statement of Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1) |y| > 0,
- 2) $|xy| \leq p$, and
- 3) for each $i \ge 0$, $xy^i z \in A$.

Recall that |s| represents the length of string *s*, which is the number of symbols in *s*.

Describing the pumping lemma

For a DFA with *m* states,

Take string w , $w \in L$

Since $W \in L$, there is a walk from the start state to a final state labeled with W

Describing the pumping lemma (cont'd.)

If the length of W is greater than the number of states m, then there must be a state, say q that is repeated in the walk for w

Describing the pumping lemma (cont'd.)

Describing the pumping lemma (cont'd)

Observations : length $|x y| \leq m$ number of states length $|y| \ge 1$ Z. X

Describing the pumping lemma (cont'd.)

Some Applications of Pumping Lemma

The following languages are not regular.

- 1. $\{a^nb^n \mid n \ge 0\}$.
- 2. {ww| w in {a, b}*}.
- 3. {w = w^R | w in {a, b}* } (language of palindromes).
- 4. $\{1^{n^2} \mid n \ge 0\}.$

Prove L = $\{a^nb^n \mid n \ge 0\}$ is not regular

Proof:

Since L is infinite, the pumping lemma applies to L.

- Assume L is regular.
- Let p be the pumping length
- Let $w = a^p b^p$, $w \in L$, and $|w| \ge p$

Prove L = $\{a^nb^n \mid n \ge 0\}$ is not regular (cont'd)

According to pumping lemma,

 $a^{p}b^{p} = xyz$ and since $|xy| \le p$

 $x = a^{k}, y = a^{m}, z = a^{p-k-m}b^{p}$

 $|y|=m>0, 0<|xy|=k+m \le p$

Prove L = $\{a^nb^n \mid n \ge 0\}$ is not regular (cont'd)

$$xy^2z = xyyz = a^k a^m a^m a^{p-k-m}b^p$$

= $a^{p+m}b^p$

But $a^{p+m}b^p \notin L$ since m > 0, which contradict pumping lemma (3). Therefore, the assumption that L is a regular language is not true.

Important points of Using Pumping Lemma

- Cannot use a specific number for p

 Choosing p=3 or any number is not right
- String w must belong to L and |w| is at least the pumping length.
 - Choosing $w = a^2b^2$ is wrong since we do not know the exact value of the pumping length p.
- Must consider all possibilities for what the substrings x, y and z can be, such that w = xyz and |xy| ≤ p.
- The pumping lemma is used to show that a language is not regular; it cannot be used to show that a language is regular.

Practice

 Design a DFA A such that L(A)={w in {a,b}* | w contains aab as a substring}

Practice 2

- Given: L1 = {all strings that have two consecutive a's}
- L2 = {all strings that have two consecutive b's}
- Question: find the automaton A such that L(A) = L1 U L2