
1 

Chapter 1: Regular Languages 



2 

Finite Automata 
• Models for computers with a limited 

amount of memory 
• It reads one pass through the input 
• Has no capability to write 
 



3 

Deterministic Finite Automata 
(DFA) 

A finite automaton is a 5-tuple (Q, Σ, δ, s, F), where 
1.S is a finite set called the states 
2.Σ is a finite set called the  alphabet 
3.δ:( Q x Σ     Q) is the transition function between states 
      i.e., (state, symbol) ---> next state  
4.s is the start state (one special state) 
5.F ⊆ Q is the set of accept states (0 or more accept states) 



State Diagram 

4 

q1 q2 q3 q2 

0 

1 

1 

0 

0, 1 

q1: Start state q2: An accept state 

The arrows going from one state to another are called transitions  



5 

How does a DFA work? 

• An input string is placed on the tape (left-
justified). 

• Each cell contains one symbol 
• The reading head is placed on the leftmost cell 

of the tape. 
• DFA begins from the start state. 
• On the symbol the head points to, DFA transit 

from one state to the next state (may be the 
same state) 



6 

How does a DFA work? (contd.) 
• DFA continue the transitions until the entire 

string is read.  
– In each step, DFA consults a transition table and 

changes state based on (s, σ) where 
• s - current state  
• σ - current symbol scanned by the head 

• After reading the entire input string,  
– if DFA ends in an accept state, the input is accepted 
– if DFA ends in a non-accept state, the input is 

rejected. 

 



7 

Languages 

• A language L is a subset of  ∑* 

– i.e., language {0, 01, 11} is a subset 
of {0,1}*  

• The language accepted by a DFA D = L(D) 
is the set of all strings w such that D ends 
in an accept state on input w. 

• A language is called a regular language if 
there exists a DFA that recognizes/accepts 
it. 



8 

L = {a2n | n >= 1} 

q1 q2 q3 q2 a 
a 

a 

• L={aa, aaaa, aaaaaa, ……} 



9 

Example: L(M) = {w in {a, b}* | w 
contains even number of a's} 

q2 q2 q1 

b 

a 

a 

b 



10 

Regular Languages 
• A Language is regular iff there is a finite 

automaton that accepts it.  
• Examples: design DFAs for the following regular 

languages:  
– φ 
– {ε} 
– Σ* 

– {w in {0,1}* | w starts with 1 and ends with 0}     
– {w in {0,1}* | the second symbol of w is 1}     
– {w in {0,1}* | w contains 1010 as a substring}  



Closure properties of regular 
languages 

• The class of regular languages are closed 
under the union, intersection, and 
complement operations 

 

11 



12 

Example 
• Σ = {a, b} 
• L1 = { w in Σ* | w has even number of a's} 
• L2 = { w in Σ* | w has odd number of b's}.  

– L1 ∪ L2 = ?  
– L1 ∩ L2 = ? 
– L1 

 



13 

General construction of DFAs for the 
languages after union and intersection  

• Let M1 = (Q1, Σ, δ1, s1, F1) be the DFA for 
L1 and M2 = (Q2, Σ, δ2, s2, F2) be the DFA 
for L2 
– M = (Q, Σ, δ, s, F) where: 

• Q = Q1 X Q2 
• s = (s1, s2) 
• Σ is the same 
• δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ)) 
• for Union, F  = (Q1 X F2) U (F1 X Q2) 
• for Intersection, F = F1 X F2 



14 

DFAs for L1 ∪ L2  and L1 ∩ L2 ?  
• Σ = {a, b} 
• L1 = { w in Σ* | w has even number of a's} 
• L2 = { w in Σ* | w has odd number of b's}.  

 



15 

Construction for Complement 
for DFAs 

Given DFA M1 = (Q1, Σ, δ1, s1, F1) 

L(M) = Complement of L(M1) 

Swap the accept and non-accept states of M1 to create M that 
recognizes the complement language of L1: 

M = (Q, Σ, δ, s, F) 
Q = Q1 
s = s1 
F = Q  - F1 
δ = δ1 

 



16 

Examples 



17 

Nondeterministic Finite Automaton 
(NFA)  

• In a DFA, for a given state and the an input 
symbol, the next state is fixed 

• In a NFA, several choices may exist for the next 
state at any point. 

• NFA is a generalization of DFA. A NFA allows: 
– 0 or more next states for the same (state, symbol): 

guessing the next state, 
– Transitions can be labeled by the empty string ε : 

changing state without reading input,  
– No transition on an input symbol. 



18 

Formal definition of NFA 

• Σε = Σ U {ε}. 
• NFA M = (Q, Σ, δ, s, F) where: 

– Q: finite set of states 
– Σ: finite input alphabet 
– δ: a subset of Q X Σε  X Q.  
– s: the start state 
– F ⊆ Q – the set of accept states 



19 

How does an NFA work? 

• String w is accepted by a NFA if there 
exists a sequence of guesses that lead to 
an accept state after reading the entire 
string w. 

• Language accepted by a NFA is the set of 
all strings that are accepted by the NFA.  



20 

Example: {w in {0,1}* | the second 
to the last symbol of w is a 1} 

q0 q1 q3 q2 

0, 1 

1 0, 1 



21 

NFA acceptance 

• Define δ*(q, w) as a set of states: {p | p    δ*(q, w)  
if there is a directed path from q to p labeled with 
w.} 
– δ*(q0, 1) = {q0, q1}  
– δ*(q0, 11) = {q0, q1, q2}  

 
 

∈

q0 q1 q3 q2 

0, 1 

1 0, 1 



22 

 NFA acceptance (cont’d) 

• w is accepted by NFA M iff δ*(q0, w) ∩ F is 
not empty.  

 
• L(M) = {w in Σ* | w is accepted by M}. 

 



23 

NFA vs. DFA 
• Theorem: For every NFA M there is an equivalent DFA 

M’ 
– NFA is not more powerful than DFA! 

• Proof Idea:   
– DFA uses more states to get rid of the 

nondeterminism.  



24 

Example: Conversion from NFA to 
an equivalent DFA 

 NFA 

δ 0 1 
q0 {q0} {q0,q1} 

q1 {q2} {q2} 

q2 ∅ ∅ 
 

q0 q1 q3 q2 

0, 1 

1 0, 1 



25 

Traditional method: Conversion 
from NFA to an equivalent DFA 

• For now, assume no transitions labeled by ε in 
the NFA (will get rid of this assumption later!) 

• NFA M = (Q, Σ, ∆, s, F) 
• DFA M' = (Q', Σ, δ, s', F') where: 

– Q' = 2Q  

– s' = s 
– F' = {q | q ∩ F is not empty, i.e, q contains at least 

one accept state from the NFA M} 
– δ({p1, p2, …, pm}, σ) = δ*(p1, σ) ∪ δ*(p2, σ) ∪ ... ∪  
   δ*(pm, σ) 



1. Traditional method for the 
example 

26 

δ 0 1 
q0 {q0} {q0,q1} 

q1 {q2} {q2} 

q2 ∅ ∅ 

δ 0 1 

∅ ∅ ∅ 

q0 q0 q0q1 

q1 q2 q2 

q2 ∅ ∅ 

q0q1 q0q2 q0q1q2 

q0q2 q0 q0q1 

q1q2 q2 q2 

q0q1q2 q0q2 q0q1q2 

q0 q0q1 

 
q0q1q2 

 

0 

1 1 

1 

0 
1 0 

0 
 

q0q2 
 

states Ø, q1, q2, and q1q2  can be 
deleted because they don’t have 
incoming transitions: they cannot be 
reached from the start state q0. 



2. Subset Construction Method 

27 

• For every state in the NFA, determine all reachable states for 
every input symbol (first table). 

• The set of reachable states constitute a single state in the 
converted DFA (Each state in the DFA corresponds to a 
subset of states in the NFA). 

• Starting from the start state, find reachable states for each 
new DFA state, until no more new states can be found. 



28 

Example 

δ 0 1 
q0 q0 q0q1 

q0q1 q0q2 q0q1q2 
q0q2 q0 q0q1 

q0q1q2 

 
q0q2 

 
q0q1q2 

δ 0 1 
q0 {q0} {q0,q1} 

q1 {q2} {q2} 

q2 ∅ ∅ 
 

q0 q0q1 

 
q0q1q2 

 

0 

1 1 

1 

0 
1 0 

0 
 

q0q2 
 



29 

How to handle ε transitions? 
• Define ε-closure of state q as δ*(q, ε).  

– notation: ε -closure(q)= δ*(q, ε) (all the states 
including itself that can be reached from q via 0 or 
more ε’s).  

• Extend ε-closure to sets of states by: 
– ε-closure({s1, ... ,sm}) = ε-closure(s1) ∪ ... ∪ ε-closure(sm) 

• For the equivalent DFA, the start state s’ of the DFA is 
s' = ε-closure(s) 

 and, 
δ({p1,..., pm}, σ) = ε-closure(∆*(p1, σ)) ∪ ... ∪ ε-closure(∆*(pm, σ)) 

• Others are the same as the DFA construction from a 
 NFA without ε transition. 



30 

Example: Convert a NFA with ε 
transitions to DFA 

ε ε 

δ 0 1 
q0 {q0} ∅ 
q1 ∅ {q1} 
q2 {q2} ∅ 

 

ε-closure(q0)={q0,q1,q2} 
ε-closure(q1)={q1,q2} 
ε-closure(q2)={q2} 

δ 0 1 
q0 {q0, q1,q2} ∅ 

q1 ∅ {q1, q2} 

q2 {q2} ∅ 
 

 NFA 

q0 q1 q3 q2 

0 

ε ε 

1 0 

after 
ε-closure 



Using subset construction 
method 

31 

δ 0 1 
q0 {q0, q1,q2} ∅ 

q1 ∅ {q1, q2} 

q2 {q2} ∅ 
 

δ 0 1 
q0q1q2 q0q1q2 q1q2 

q1q2 q2 q1q2 

q2 q2 ∅ 

∅ ∅ ∅ 

The start state of the NFA is q0, so the start state of the DFA is ε-closure(q0),  
which is q0q1q2. Other 3 tuples are constructed the same way as the 
conversion for NFAs without ε transitions.  

DFA 



32 

DFA =  

(The other four states do not have incoming transitions and thus 
cannot be reached from the start state. They are omitted here.) 

q0q1q2 q1q2 q2 ∅ 

0 

1 0 

1 0 

1 

0, 1 



33 

Regular Operations 



34 

Closure properties of regular 
languages 

• Previously we discussed regular 
languages are closed under union, 
intersection, and complement. 

• Regular languages are also closed under  
– Concatenation 
– Star 



35 

Construction for L1•L2 

L= (Q, Σ, δ, s, F) 
Q = Q1 ∪ Q2 
s = s1 
F = F2 
δ= δ1 ∪ δ2 ∪ F1 X {ε} X {s2} 

L1= (Q1, Σ, δ1, s1, F1) 
 

L2= (Q2, Σ, δ2, s2, F2) 
 



Construction for L1•L2 (cont’d) 

36 

N1 N2 

N 

ε 

ε 

ε 



37 

Construction for Star 

L=L1*= (Q, Σ, δ, s, F) 
Q = Q1 ∪ {s} 
s is the new start state 
F = F1 ∪ {s} 
δ = δ1 ∪ F1 X {ε} X {s1} 

L1= (Q1, Σ, δ1, s1, F1) 

N1 N 

ε 
ε 

ε 



38 

Construction the NFA for  
L1 ∪ L2 

L= (Q, Σ, δ, s, F) 
Q = {s} ∪ Q1 ∪ Q2 
s is the new start state 
F = F1 ∪ F2 
δ = δ1 ∪ δ2 ∪ s X {ε} X {s1, s2} 

L1= (Q1, Σ, δ1, s1, F1) 
 

L2= (Q2, Σ, δ2, s2, F2) 
 



Construction for L1 ∪ L2 
(cont’d) 

39 

N1 

N2 

N 

ε 

ε 



40 

Regular expressions 
• It is another way to view regular languages. 
• Definition of Regular expressions:  

– a for some a in the alphabet Σ 
– ε 
– φ 
– (R1 ∪ R2), where R1 and R2 are regular expressions 
– (R1 • R2), where R1 and R2 are regular expressions 
– (R1*), where R1 is a regular expressions 



41 

Examples of regular expressions 

• Note: We  drop parentheses and dots when not 
required, i.e.,  
– (a ∪ b) is written as a ∪ b 
– a • b is written as ab 

• Let Σ = {a, b}, the following are regular 
expressions:  
– φ, a, b 
– φ*, a*, b*, ab, a ∪ b 
– (a ∪ b)*, a*b*, (ab)* 
– (a ∪ b)*ab  



42 

Some exercises on regular 
expressions 

• What is the language of ((a ∪ b)*a(a ∪ b)*)? 
– Answer: L={w in {a, b}* | w contains at least one 

a} 
• Write regular expressions for:  

– {w in {a, b}* | the length of w (the number of             
 symbols, |w|) is even}.  

– {w in {a, b}* | w does not have ab as a substring}. 
– {w in {a, b}* | no b in w can come before any a in 

w}.   
   Answer: 1. (a ∪ b)2n, n ≥ 0; 2. b*a*; 3. a*b*  



43 

• a) For every regular expression there is an 
equivalent NFA 

• b) For every DFA there is an equivalent regular 
expression.  

• Proof of (a): 
– For φ, the NFA is:  

 
 

– For σ, the NFA is: 
 
 

Regular expressions vs. FA's 

σ 



44 

Example: convert regular 
expression (a U b)*b to NFA 

ε q1 a a:  

ε q1 b b:  

ε q1 a 
a U b:  

ε q1 b 

ε 

ε 



45 

Example (cont’d): NFA for (a U b)*b 

(aUb)*: 

ε q1 a 

ε q1 b 

ε 

ε ε 

ε 

ε 



46 

Example (contd.) : NFA for (a U b)*b 

(a U b)*b: 

ε a 

ε b 

ε 

ε 

ε 

ε 

ε 
ε 

ε 

ε 

b 



Exercise 

• Convert the Regular expression ab U a* to 
a NFA 

47 



48 

Convert a DFA to a regular 
expression 

• Steps:  
– DFA → GNFA → regular expression. 

• GNFA (Generalized NFA) 
– In GNFA, the labels on the transitions can be 

regular expressions.   
• Need special GNFA that satisfies:  

(1) The start state has no incoming transitions; 
(2) Only one accept state; 
(3) The accept state has no outgoing transitions. 



49 

Convert a DFA to a regular 
expression (cont’d) 

• Steps:  
1. Convert the DFA to a special GNFA;   
2. Eliminate one state at a time, except the 

start state and the accept state, until only the 
start state and the accept state are left; 

3. Output the label on the single transition from 
the start state to the accept state. 

 



50 

Eliminating state q{rip} 

This figure is taken from the book Introduction to Theory of Computation, 
Michael Sipser, page 72. 



51 

Example: convert DFA to 
regular expression  

This figure (a), (b), (c), (d) are taken from Figure 1.67 on the book 
Introduction to Theory of Computation, Michael Sipser, page 75. 

To GNFA Remove state 2 Remove state 1 



52 

Pumping Lemma 

• Not all languages are regular 
• Pumping lemma is used to show that 

some languages are not regular. 



53 

Statement of Pumping Lemma 

 If A is a regular language, then there is a 
number p (the pumping length) where, if s 
is any string in A of length at least p, then 
s may be divided into three pieces, s = xyz, 
satisfying the following conditions: 
1) |y| > 0,  
2) |xy| ≤ p, and  
3) for each i ≥ 0, xyiz ∈ A. 
 Recall that |s| represents the length of string s, which is the number of  
symbols in s. 



54 

Describing the pumping lemma 

Take string      ,    w Lw∈

Since            , there is a walk from the start state to a  
final state labeled with  w

......... 

Lw∈

For a DFA with m states, 



55 

Describing the pumping lemma 
(cont’d.) 

If the length of W is greater than the number of states m,  
then there must be a state, say q that is repeated in the  
walk for w  
 

q...... ...... 



56 

Describing the pumping lemma 
(cont’d.) 

zyxw =

q...... ...... 

x

y

z



57 

Describing the pumping lemma 
(cont’d) 

Observations : myx ≤||length number of states 

1|| ≥ylength 

q...... ...... 

x

y

z



58 

Describing the pumping lemma 
(cont’d.) 

q...... ...... 

x

y

z

The string          
is accepted  

zyx iIn General: ...,2,1,0=i



59 

Some Applications of Pumping 
Lemma 

The following languages are not regular. 
1. {anbn | n ≥ 0 }. 
2. {ww| w in {a, b}*}. 
3. {w = wR | w in {a, b}* } (language of 

palindromes). 
4. {1n2 | n ≥ 0}. 



60 

Prove L = {anbn | n ≥ 0 } is not 
regular 

Proof: 
Since L is infinite, the pumping lemma 

applies to L.  
– Assume L is regular.  
– Let p be the pumping length 
– Let w = apbp, w ∈ L, and |w| ≥ p 

 
    



61 

Prove L = {anbn | n ≥ 0 } is not 
regular (cont’d) 

According to pumping lemma,  
              apbp = xyz 
and since |xy| ≤ p 
 
 

p p 

x 
y 

a…aa…ab…bb…b 

z 

x = ak, y= am, z=ap-k-mbp 

|y|=m>0, 0<|xy|=k+m ≤ p 



62 

Prove L = {anbn | n ≥ 0 } is not 
regular (cont’d) 

    xy2z = xyyz = akamamap-k-mbp  
                                       = ap+mbp   
   But ap+mbp ∉ L since m > 0, which contradict 

pumping lemma (3). Therefore, the assumption 
that L is a regular language is not true. 



63 

Important points of  
Using Pumping Lemma 

• Cannot use a specific number for p 
– Choosing p=3 or any number is not right 

• String w must belong to L and |w| is at least the 
pumping length. 
– Choosing w = a2b2 is wrong since we do not know the 

exact value of the pumping length p.  
• Must consider all possibilities for what the 

substrings x, y and z can be, such that w = xyz 
and |xy| ≤ p. 

• The pumping lemma is used to show that a 
language is not regular; it cannot be used to 
show that a language is regular. 



Practice 

• Design a DFA A such that L(A)={w in 
{a,b}* | w contains aab as a substring} 
 

64 



Practice 2 

• Given: L1 = {all strings that have two 
consecutive a’s} 

• L2 = {all strings that have two consecutive 
b’s} 

• Question: find the automaton A such that 
L(A) = L1 U L2 
 

65 


	Chapter 1: Regular Languages
	Finite Automata
	Deterministic Finite Automata�(DFA)
	State Diagram
	How does a DFA work?
	How does a DFA work? (contd.)
	Languages
	L = {a2n | n >= 1}
	Example: L(M) = {w in {a, b}* | w contains even number of a's}
	Regular Languages
	Closure properties of regular languages
	Example
	General construction of DFAs for the languages after union and intersection 
	DFAs for L1  L2  and L1  L2 ? 
	Construction for Complement for DFAs
	Slide Number 16
	Nondeterministic Finite Automaton (NFA) 
	Formal definition of NFA
	How does an NFA work?
	Example: {w in {0,1}* | the second to the last symbol of w is a 1}
	NFA acceptance
	 NFA acceptance (cont’d)
	NFA vs. DFA
	Example: Conversion from NFA to an equivalent DFA
	Traditional method: Conversion from NFA to an equivalent DFA
	1. Traditional method for the example
	2. Subset Construction Method
	Example
	How to handle  transitions?
	Example: Convert a NFA with  transitions to DFA
	Using subset construction method
	DFA = 
	Regular Operations
	Closure properties of regular languages
	Construction for L1L2
	Construction for L1L2 (cont’d)
	Construction for Star
	Construction the NFA for �L1  L2
	Construction for L1  L2 (cont’d)
	Regular expressions
	Examples of regular expressions
	Some exercises on regular expressions
	Regular expressions vs. FA's
	Example: convert regular expression (a U b)*b to NFA
	Example (cont’d): NFA for (a U b)*b
	Example (contd.) : NFA for (a U b)*b
	Exercise
	Convert a DFA to a regular expression
	Convert a DFA to a regular expression (cont’d)
	Eliminating state q{rip}
	Example: convert DFA to regular expression 
	Pumping Lemma
	Statement of Pumping Lemma
	Describing the pumping lemma
	Describing the pumping lemma (cont’d.)
	Describing the pumping lemma (cont’d.)
	Describing the pumping lemma (cont’d)
	Describing the pumping lemma (cont’d.)
	Some Applications of Pumping Lemma
	Prove L = {anbn | n  0 } is not regular
	Prove L = {anbn | n  0 } is not regular (cont’d)
	Prove L = {anbn | n  0 } is not regular (cont’d)
	Important points of �Using Pumping Lemma
	Practice
	Practice 2

