
1

Chapter 2: Context-Free Languages

2

Context Free Languages

• The class of regular language is a subset
of the class of context free languages

regular languages

context-free
languages

•

•

{wwR |w in {a,b}*}

{anbn | n >= 0}

3

Context Free Grammar
Definition

• A CFG G = (V, Σ, R, S) where V ∩ Σ = ∅,
– V is a finite set of symbols called nonterminals
– Σ is a finite set of symbols called terminals.
– R is a finite set of rules, which is a subset of V

X (V ∪ Σ)*.
• <nonterminal symbol> → a string over terminals

and nonterminals.
• write A → w if (A, w) ∈ R.

– S ∈ V is the start nonterminal.

4

A CFG for some sentences

<Sentence> → <noun> <verb> <object>
<noun> → Mike | Jean
<verb> → likes | sees
<object> → flowers | zoo

• Example for the grammar to generate the

sentence Jean likes flowers:
 <Sentence> ⇒ <noun><verb><object> ⇒ Jean <verb><object>
 ⇒ Jean likes <object> ⇒ Jean likes flowers

5

A CFG for arithmetic expressions

• E → E + E | E * E | (E) | a | b
• The start nonterminal: E.
• The set of terminals: {a, b, +, *, (,)}
• The set of nonterminals: {E}
• A derivation for generating a+a*b:

E ⇒ E + E ⇒ a + E⇒ a + E * E ⇒ a + a*E
 ⇒ a + a*b

6

Another grammar for arithmetic
expressions

E → E + T | T
T → T * F | F
F → (E) | a | b
A derivation for a + a * b:

E ⇒E + T ⇒T + T ⇒F + T ⇒x + T ⇒a + T * F
⇒a + F * F ⇒a + a * F ⇒x + a*b

7

Derivations and the language of
the grammar G: L(G)

• One step derivation:
u ⇒ v if u = xAy, v = xwy and A → w in R

• 0 or more steps derivation:
u ⇒* v if u ⇒ u1 ⇒ ⇒ un = v (n ≥ 0)

• L(G) = { w in T* | S ⇒* w }.
• A language L is a context-free language if

there is a CFG G such that L(G) = L.

8

Example:

• CFG: S → aSb | ε
• Derivations for generating aabb:
 S ⇒ aSb ⇒ aaSbb ⇒ aaεbb=aabb
• L(G) = {anbn | n ≥ 0 }

9

Parse trees

In general, for a rule A → w0w1...wn, each node
for wi is placed as a child of the node
labeled with A following the order.

A

w0 w1 w2 wn • • •

10

Parse trees (cont’d)
• All derivations can be shown with parse trees.
• The order of rule applications may be lost.

S

a b S

a b S

 ε

11

E ⇒ E + E ⇒ E + E * E ⇒ a + E * E ⇒
a + a * E ⇒ a + a * b

E

E E +

E * E a

a b

12

Leftmost and Rightmost Derivations

• A derivation is a leftmost derivation if at every
step the leftmost remaining nonterminal is
replaced.
– Consider E ⇒ E + E ⇒ a + E

• A derivation is a rightmost derivation if at every
step the leftmost remaining nonterminal is
replaced.
– E ⇒ E + E ⇒ E + a

13

Ambiguity

• A string w is derived ambiguously in
context-free grammar G if it has two or
more different leftmost derivations.

• A CFG is ambiguous if it generates some
string ambiguously.

• A CFL is inherently ambiguous if it can
only be generated by ambiguous
grammars.

Ambiguity (cont’d)

• An ambiguous CFG:
– E → E + E | E * E | (E) | a | b
– For string a + a*b, two leftmost derivations:

• E ⇒ E + E ⇒ a + E ⇒ a + E * E ⇒ a + a * E ⇒ a + a * b
or
• E ⇒ E * E ⇒ E + E * E ⇒ a + E * E ⇒ a + a * E ⇒ a +

a * b

• An inherently ambiguous CFL:
 {anbmcmdn | n, m > 0} ∪ {anbncmdm | n, m > 0}

14

15

Chomsky Normal Form (CNF)
• Every rule in the CFG G is of one of the two

forms:
1) A → a
2) A → BC, B ≠ S and C ≠ S (S is the start symbol)
3) Only S → ε is allowed if ε L(G).

• All grammars can be converted into CNF
∈

16

Closure properties of CFLs

• CFLs are closed under:
1) Union
2) Concatenation
3) Star

• CFLs are NOT closed under intersection
or complement

17

Given two CFGs

• L1 = L(G1) where
 G1 = (V1, Σ, R1, S1)
• L2 = L(G2) where
 G2 = (V2, Σ, R2, S2)
• Without loss of generality, we assume that

V1 ∩ V2 = ∅

18

General construction of the CFG
for the CFL after union

• Let G = (V, Σ, R, S) where
– V = V1 ∪ V2 ∪ { S }, (S is a new start symbol)
– S ∉ V1 ∪ V2
– R = R1 ∪ R2 ∪ { S → S1 | S2 }

19

Example
• L1 = { anbn | n ≥ 0 }

– G1: S1 → aS1b | ε
• L2 = { bnan | n ≥ 0 }

– G2: S2 → bS2a | ε

• The grammar for L1 ∪ L2
– Add a new start symbol S and rules S → S1 | S2, so

the new grammar is:
 S → S1 | S2

 S1 → aS1b | ε
 S2 → bS2a | ε

20

General construction of the CFG
for the CFL after concatenation

• Let G = (V, Σ, R, S) where
– V = V1 ∪ V2 ∪ { S },
– S ∉ V1 ∪ V2
– R = R1 ∪ R2 ∪ { S → S1S2 }

 S is a new start symbol and S → S1S2 is a new rule.

21

Example

• L1 = { anbn | n ≥ 0 } , L2 = { bnan | n ≥ 0 }
• L1.L2 = { anb{n+m}am | n, m ≥ 0 }
• The CFG for L1.L2:

– Add a new start symbol S and rule S → S1S2

 so the CFG for L1.L2 is:
 S → S1S2

 S1 → aS1b | ε
 S2 → bS2a | ε

22

General construction of the CFG
for the CFL after Star

• Let G = (V, Σ, R, S) where
– V = V1 ∪ { S },
– S ∉ V1
– R = R1 ∪ { S → SS1 | ε}

23

Examples

• L1 = {anbn | n ≥ 0}
– L1* = {an1bn1 ... ankbnk | k ≥ 0 and ni ≥ 0 for all i }

• L2 = { an2 | n ≥ 1 }
– L2*= a*

• The CFG for L1*:
– Add a new start symbol S and rules S → SS1 | ε.
– The CFG for L1* is:
 S → SS1 | ε
 S1 → aS1b | ε

24

Push Down Automaton (PDA)

• PDA is a language acceptor model for
CFLs.

• Similar to NFA but has an extra
component called a stack

State
control a a b b

x
y
z

input

Stack: LIFO, size is not bounded

25

PDA (cont’d)

• In one move, a PDA can :
– change state,
– read a symbol from the input tape or ignore it,
– Write a symbol to the top (push) of the stack

and the rest in the stack are “push down”, or
– Remove a symbol from the top (pop) of the

stack and other symbols in the stack are
moved up.

26

PDA (cont’d)

• If read a, transit from state p to state q,
pop x from the stack, and push b into the
stack, it is showed as

q

a, x → b

p

27

Definition of PDA

• A PDA is a 6-tuple (Q, ∑, Γ, δ, q0, F),
where Q, ∑, Γ, δ, F are finite sets:
1. Q is the set of states
2. ∑ is the input alphabet
3. Γ is the stack alphabet
4. δ: (Q X ∑ε X Γε) (Q X Γε)
5. q0 ∈ Q is the start state, and
6. F ⊆ Q is the set of accept states

28

Example of a PDA

• PDA for L = {0n1n |n ≥ 0}

Initially place a special symbol $ on the stack and
then pop it at the end before acceptance.

This figure is taken from the book Introduction to Theory of Computation,
Michael Sipser, page 115.

29

Definition of L(M)
• The language that PDA M accepts:

– L(M) = {w∈∑* | M accepts w}

30

Example

What is the language of the above PDA?

This figure is taken from the book Introduction to Theory of
Computation, Michael Sipser, page 116.

31

Equivalence with CFGs

• For every CFG G there is a PDA M such
that L(G) = L(M)

• For every PDA M there is a CFG G such
that L(M) = L(G)

32

CFG  PDA

• Given CFG G = (V, ∑, R, S)
– Let PDA M = (Q, ∑, ∑ ∪ V ∪ {$}, δ, qstart, {qaccept})
– Q = {qstart, qloop,qaccept}
1. ((qstart, ε, ε), (qloop, S$)) ∈ δ
2. For each rule A → w,

((qloop,ε, A), (qloop, w)) ∈ δ
3. For each symbol σ ∈ ∑

((qloop, σ, σ), (qloop, ε)) ∈ δ
4. ((qloop, ε, $), (qaccept, ε)) ∈ δ

qstart

qloop

qaccept

ε, ε→S$

ε, $→ ε

ε, A→ w
σ, σ →ε

33

Example

S  aTb | b
T  Ta | ε

This figure is taken from the book Introduction to Theory of Computation,
Michael Sipser, page 120.

34

PDA P  CFG G

• First, we simplify our task by modifying P
slightly to give it the following three
features:
1. It has a single accept state, qaccept.
2. It empties its stack before accepting.
3. Each transition either pushes a symbol onto

the stack (a push move) or pops one off the
stack (a pop move), but it does not do both
at the same time.

35

PDA P  CFG G (cont’d)
• For P = {Q, ∑, Γ, δ, q0, {qaccept}}, to construct G:
• The variables of G are {Apq | p, q ∈ Q}.
• The start variable is Aq0qqaccept

Type 1: For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈
∑ε , if ((p, a, ε), (r, u)) is in δ and ((s, b, u), (q, ε)) is
in δ, put the rule Apq→ aArsb in G.
Type 2: For each p, q, r ∈ Q, put the rule Apq→ AprArq in
G.
Type 3: Finally, for each p ∈ Q, put the rule App→ ε in G.

36

Example

• Let M be the PDA for {anbn | n > 0}
– M = {{p, q}, {a, b}, {a}, δ, p, {q}}, where
– δ = {((p, a, ε),(p, a)), ((p, b, a), (q, ε)), ((q, b,

a),(q, ε))}

p q

a, ε a

b, a ε

b, a ε

37

Example (cont’d)
• CFG, G = (V, {a, b}, Apq, R), Apq is the start variable

– V = {App, Apq, Aqp, Aqq}.
• R contains the following rules:

– Type 1:
• Apq → aAppb
• Apq → aApqb

– Type 2:
• App → App App | Apq Aqp
• Apq → App Apq | Apq Aqq
• Aqp → Aqp App | Aqq Aqp
• Aqq → Aqp Apq | Aqq Aqq

– Type 3:
• App → ε
• Aqq → ε

We can discard all rules
containing the variables Aqq
and Aqp. And we can also
simplify the rules containing
App and get the grammar with
just two rules
Apq →ab and Apq → aApqb.

38

Non-context free languages

• Pumping lemma for context-free
languages:
– If A is an infinite context-free language, then there is a

number p (the pumping length) where, if s is any
string in A of length at least p, then s may be divided
into five pieces s = uvxyz satisfying the conditions:

1. |vy| > 0,
2. |vxy| <= p, and
3. For each i ≥ 0, uvixyiz A.

∈

39

Some non context-free languages

• The following languages are not context-
free.
1. {anbncn | n ≥ 0 }.
2. {ww | w in {a, b}*}
3. {an2 | n ≥ 0}
4. {w in {a, b, c}* | w has equal a’s, b’s and c’s}.

40

Prove L={anbncn | n ≥ 0} is not a
CFL

• Assume L is a CFL. L is infinite.
• Let w = apbpcp, where p is the pumping

length

W=a …. ab …. bc …. c
p p p

|w| = 3p ≥ p
|vy| > 0

|vxy| ≤ p

41

Example (contd.)
Case 1:

– Both v and y contain only one type of alphabet
symbols, such that v does not contain both a’s and
b’s or both b’s and c’s and the same holds for y. Two
possibilities are shown below.

– In this case the string uv2xy2z cannot contain equal

number of a’s, b’s and c’s. Therefore, uv2xy2z ∉ L.

a … a b … b c … c
v y/v y

42

Example (cont’d)
Case 2:

– Either v or y contain more than one type of alphabet
symbols. Two possibilities are shown below.

– In this case the string uv2xy2z may contain equal
number of the three alphabet symbols but won’t
contain them in the correct order. Therefore,

 uv2xy2z ∉ L.

a…a … a b b b… b c … c
v y/v y

43

CFL is not closed under
intersection or complement

• Let Σ = {a, b, c}. Both L and L’ are CFLs
– L = {w over Σ | w has equal a’s and b’s}
– L’ = {w over Σ | w has equal b’s and c’s}.

• L ∩ L’ = {w over Σ | w has equal a’s, b’s and c’s},
it is not a CFL.

• Because of CFLs are closed under Union and
the DeMorgan’s law, we can see that CFLs are
not closed under complement either.

	Chapter 2: Context-Free Languages
	Context Free Languages
	Context Free Grammar Definition
	A CFG for some sentences
	A CFG for arithmetic expressions
	Another grammar for arithmetic expressions
	Derivations and the language of the grammar G: L(G)
	Example:
	Parse trees
	Parse trees (cont’d)
	E  E + E  E + E * E  a + E * E  a + a * E  a + a * b
	Leftmost and Rightmost Derivations
	Ambiguity
	Ambiguity (cont’d)
	Chomsky Normal Form (CNF)
	Closure properties of CFLs
	Given two CFGs
	General construction of the CFG for the CFL after union
	Example
	General construction of the CFG for the CFL after concatenation
	Example
	General construction of the CFG for the CFL after Star
	Examples
	Push Down Automaton (PDA)
	PDA (cont’d)
	PDA (cont’d)
	Definition of PDA
	Example of a PDA
	Definition of L(M)
	Example
	Equivalence with CFGs
	CFG  PDA
	Example
	PDA P  CFG G
	PDA P  CFG G (cont’d)
	Example
	Example (cont’d)
	Non-context free languages
	Some non context-free languages
	Prove L={anbncn | n  0} is not a CFL
	Example (contd.)
	Example (cont’d)
	CFL is not closed under intersection or complement

