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Chapter 2: Context-Free Languages 
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Context Free Languages 

• The class of regular language is a subset 
of the class of context free languages 

regular languages  

context-free 
languages  

• 

• 

{wwR |w in {a,b}*}  

{anbn | n >= 0}  
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Context Free Grammar 
Definition  

• A CFG G = (V, Σ, R, S) where V ∩ Σ = ∅,  
– V is a finite set of symbols called nonterminals  
– Σ is a finite set of symbols called terminals.  
– R is a finite set of rules, which is a subset of V 

X (V ∪ Σ)*. 
• <nonterminal symbol> → a string over terminals 

and nonterminals. 
• write A → w if (A, w) ∈ R. 

– S ∈ V is the start nonterminal. 
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A CFG for some sentences 

<Sentence>  →  <noun> <verb> <object> 
<noun> → Mike | Jean  
<verb> → likes | sees    
<object> → flowers | zoo 
 
• Example for the grammar to generate the 

sentence Jean likes flowers:  
     <Sentence> ⇒ <noun><verb><object> ⇒ Jean <verb><object>  
                          ⇒ Jean likes <object> ⇒ Jean likes flowers 
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A CFG for arithmetic expressions  

• E → E + E | E * E | (E) | a | b 
• The start nonterminal: E.  
• The set of terminals: {a, b, +, *, (, )} 
• The set of nonterminals: {E} 
• A derivation for generating a+a*b: 

E ⇒ E + E ⇒ a + E⇒ a + E * E ⇒ a + a*E  
     ⇒ a + a*b 
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Another grammar for arithmetic 
expressions  

E → E + T | T 
T → T * F | F 
F → (E) | a | b 
A derivation for a + a * b: 

E ⇒E + T ⇒T + T ⇒F + T ⇒x + T ⇒a + T * F 
⇒a + F * F ⇒a + a * F ⇒x + a*b 
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Derivations and the language of 
the grammar G: L(G)  

• One step derivation: 
u ⇒ v if u = xAy, v = xwy and A → w in R  

• 0 or more steps derivation: 
u ⇒* v if u ⇒ u1 ⇒ .... ⇒ un = v (n ≥ 0) 

• L(G) = { w in T* | S ⇒* w }. 
• A language L is a context-free language if 

there is a CFG G such that L(G) = L.  
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Example:  

• CFG: S → aSb | ε 
• Derivations for generating aabb: 
          S ⇒ aSb ⇒ aaSbb ⇒ aaεbb=aabb 
• L(G) = {anbn | n ≥ 0 } 
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Parse trees 

In general, for a rule A → w0w1...wn, each node 
for wi  is placed as a child of the node 
labeled with A following the order. 

A 

w0 w1 w2 wn •    •    • 
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Parse trees (cont’d)  
• All derivations can be shown with parse trees.  
• The order of rule applications may be lost. 

S 

a b S 

a b S 

 ε 
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E ⇒ E + E ⇒ E + E * E ⇒ a + E * E ⇒ 
a + a * E ⇒ a + a * b 

E 

E E + 

E * E a 

a b 
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Leftmost and Rightmost Derivations  

• A derivation is a leftmost derivation if at every 
step the leftmost remaining nonterminal is 
replaced. 
– Consider E ⇒ E + E ⇒ a + E 

• A derivation is a rightmost derivation if at every 
step the leftmost remaining nonterminal is 
replaced. 
– E ⇒ E + E ⇒ E + a 
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Ambiguity  

• A string w is derived ambiguously in 
context-free grammar G if it has two or 
more different leftmost derivations. 

• A CFG  is ambiguous if it generates some 
string ambiguously. 

• A CFL is inherently ambiguous if it can 
only be generated by ambiguous 
grammars. 



Ambiguity (cont’d) 

• An ambiguous CFG:  
– E → E + E | E * E | (E) | a | b 
– For string a + a*b, two leftmost derivations: 

• E ⇒ E + E ⇒ a + E ⇒ a + E * E ⇒ a + a * E ⇒ a + a * b 
or 
• E ⇒ E * E ⇒ E + E * E ⇒ a + E * E ⇒ a + a * E ⇒ a + 

a * b 

• An inherently ambiguous CFL:  
  {anbmcmdn | n, m > 0} ∪ {anbncmdm | n, m > 0} 

14 
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Chomsky Normal Form (CNF) 
• Every rule in the CFG G is of one of the two 

forms: 
1) A → a 
2) A → BC, B ≠ S and C ≠ S (S is the start symbol) 
3) Only S → ε is allowed if ε    L(G). 

• All grammars can be converted into CNF 
∈
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Closure properties of CFLs  

• CFLs are closed under: 
1) Union 
2) Concatenation 
3) Star 

• CFLs are NOT closed under intersection 
or complement 
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Given two CFGs  

• L1 = L(G1) where  
  G1 = (V1, Σ, R1, S1) 
• L2 = L(G2) where 
  G2 = (V2, Σ, R2, S2) 
• Without loss of generality, we assume that 

V1 ∩ V2 = ∅ 



18 

General construction of the CFG 
for the CFL after union 

• Let G = (V, Σ, R, S) where 
– V = V1 ∪ V2 ∪ { S }, (S is a new start symbol) 
– S ∉ V1 ∪ V2 
– R = R1 ∪ R2 ∪ { S → S1 | S2 } 
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Example  
• L1 = { anbn | n ≥ 0 }  

– G1: S1 → aS1b | ε 
• L2 = { bnan | n ≥ 0 } 

– G2: S2 → bS2a | ε 

• The grammar for L1 ∪ L2  
– Add a new start symbol S and rules S → S1 | S2, so 

the new grammar is:      
   S → S1 | S2 

   S1 → aS1b | ε 
   S2 → bS2a | ε 
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General construction of the CFG 
for the CFL after concatenation 

• Let G = (V, Σ, R, S) where 
– V = V1 ∪ V2 ∪ { S },  
– S ∉ V1 ∪ V2 
– R = R1 ∪ R2 ∪ { S → S1S2 } 

 S is a new start symbol and S → S1S2 is a new rule. 
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Example 

• L1 = { anbn | n ≥ 0 } , L2 = { bnan | n ≥ 0 } 
• L1.L2 = { anb{n+m}am | n, m ≥ 0 } 
• The CFG for L1.L2: 

– Add a new start symbol S and rule S → S1S2  

   so the CFG for L1.L2 is: 
   S → S1S2 

   S1 → aS1b | ε 
   S2 → bS2a | ε 
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General construction of the CFG 
for the CFL after Star 

• Let G = (V, Σ, R, S) where 
– V = V1 ∪ { S },  
– S ∉ V1 
– R = R1 ∪ { S → SS1 | ε} 
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Examples 

• L1 = {anbn | n ≥ 0}  
– L1* = {an1bn1 ... ankbnk | k ≥ 0 and ni ≥ 0 for all i } 

• L2 = { an2 | n ≥ 1 } 
– L2*= a* 

• The CFG for L1*:  
– Add a new start symbol S and rules S → SS1 | ε. 
– The CFG for L1* is: 
   S → SS1 | ε 
   S1 → aS1b | ε 
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Push Down Automaton (PDA) 

• PDA is a language acceptor model for 
CFLs. 

• Similar to NFA but has an extra 
component called a stack 

State 
control a a b b 

x 
y 
z 

input 

Stack: LIFO, size is not bounded 
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PDA (cont’d)  

• In one move, a PDA can : 
– change state, 
– read a symbol from the input tape or ignore it, 
– Write a symbol to the top (push) of the stack 

and the rest in the stack are “push down”, or  
– Remove a symbol from the top (pop) of the 

stack and other symbols in the stack are 
moved up. 
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PDA (cont’d) 

• If read a, transit from state p to state q, 
pop x from the stack, and push b into the 
stack, it is showed as 

q 

a, x → b  

p 
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Definition of PDA  

• A PDA is a 6-tuple (Q, ∑, Γ, δ, q0, F), 
where Q, ∑, Γ, δ, F are finite sets: 
1. Q is the set of states 
2. ∑ is the input alphabet 
3. Γ is the stack alphabet 
4. δ: (Q X ∑ε X Γε)      (Q X Γε) 
5. q0 ∈ Q is the start state, and 
6. F ⊆ Q is the set of accept states 
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Example of a PDA 

• PDA for L = {0n1n |n ≥ 0} 

Initially place a special symbol $ on the stack and  
then pop it at the end before acceptance. 

This figure is taken from the book Introduction to Theory of Computation, 
Michael Sipser, page 115. 
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Definition of L(M) 
• The language that PDA M accepts:  

– L(M) = {w∈∑* | M accepts w} 
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Example 

What is the language of the above PDA? 

This figure is taken from the book Introduction to Theory of 
Computation, Michael Sipser, page 116. 
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Equivalence with CFGs  

• For every CFG G there is a PDA M such 
that L(G) = L(M) 

• For every PDA M there is a CFG G such 
that L(M) = L(G) 
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CFG  PDA 

• Given CFG G = (V, ∑, R, S) 
– Let PDA M = (Q, ∑, ∑ ∪ V ∪ {$}, δ, qstart, {qaccept}) 
– Q = {qstart, qloop,qaccept} 
1. ((qstart, ε, ε), (qloop, S$)) ∈ δ  
2. For each rule A → w, 

((qloop,ε, A), (qloop, w)) ∈ δ  
3. For each symbol σ ∈ ∑ 

((qloop, σ, σ), (qloop, ε)) ∈ δ 
4. ((qloop, ε, $), (qaccept, ε)) ∈ δ 

qstart 

qloop 

qaccept 

ε, ε→S$ 

ε, $→ ε 

ε, A→ w 
σ, σ →ε 



33 

Example 

S  aTb | b 
T  Ta | ε  

This figure is taken from the book Introduction to Theory of Computation, 
Michael Sipser, page 120. 
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PDA P  CFG G 

• First, we simplify our task by modifying P 
slightly to give it the following three 
features: 
1. It has a single accept state, qaccept. 
2. It empties its stack before accepting. 
3. Each transition either pushes a symbol onto 

the stack (a push move) or pops one off the 
stack (a pop move), but it does not do both 
at the same time. 
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PDA P  CFG G (cont’d) 
• For P = {Q, ∑, Γ, δ, q0, {qaccept}}, to construct G: 
• The variables of G are {Apq | p, q ∈ Q}.  
• The start variable is Aq0qqaccept 

Type 1: For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ 
∑ε , if  ((p, a, ε), (r, u)) is in δ and ((s, b, u), (q, ε)) is 
in δ, put the rule Apq→ aArsb in G. 
Type 2: For each p, q, r ∈ Q, put the rule Apq→ AprArq in 
G. 
Type 3: Finally, for each p ∈ Q, put the rule App→ ε in G.  
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Example 

• Let M be the PDA for {anbn | n > 0} 
– M = {{p, q}, {a, b}, {a}, δ, p, {q}}, where 
– δ = {((p, a, ε),(p, a)), ((p, b, a), (q, ε)), ((q, b, 

a),(q, ε))} 
 

p q 

a, ε     a 

b, a     ε 

b, a     ε  
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Example (cont’d) 
• CFG, G = (V, {a, b}, Apq, R), Apq is the start variable 

– V = {App, Apq, Aqp, Aqq}.  
• R contains the following rules: 

– Type 1:  
• Apq → aAppb                        
• Apq → aApqb 

– Type 2: 
• App → App App | Apq Aqp 
• Apq → App Apq | Apq Aqq 
• Aqp → Aqp App | Aqq Aqp 
• Aqq → Aqp Apq | Aqq Aqq 

– Type 3: 
• App → ε 
• Aqq → ε 

 

We can discard all rules 
containing the variables Aqq 
and Aqp. And we can also 
simplify the rules containing 
App and get the grammar with 
just two rules  
Apq →ab and Apq → aApqb. 
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Non-context free languages 

• Pumping lemma for context-free 
languages:  
– If A is an infinite context-free language, then there is a 

number p (the pumping length) where, if s is any 
string in A of length at least p, then s may be divided 
into five pieces s = uvxyz satisfying the conditions: 

1. |vy| > 0,  
2. |vxy| <= p, and 
3. For each i ≥ 0, uvixyiz     A. 

 
∈
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Some non context-free languages 

• The following languages are not context-
free. 
1. {anbncn | n ≥ 0 }. 
2. {ww | w in {a, b}*} 
3. {an2 | n ≥ 0} 
4. {w in {a, b, c}* | w has equal a’s, b’s and c’s}. 
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Prove L={anbncn | n ≥ 0} is not a 
CFL 

• Assume L is a CFL. L is infinite. 
• Let w = apbpcp, where p is the pumping 

length 
 

W=a …. ab …. bc ….   c 
p p p 

|w| = 3p ≥ p 
|vy| > 0 

|vxy| ≤ p 
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Example (contd.) 
Case 1: 

– Both v and y contain only one type of alphabet 
symbols, such that v does not contain both a’s and 
b’s or both b’s and c’s and the same holds for y. Two 
possibilities are shown below. 
 
 
 

 
– In this case the string uv2xy2z cannot contain equal 

number of a’s, b’s and c’s. Therefore, uv2xy2z ∉ L. 

a … a b … b c … c 
v y/v y 
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Example (cont’d) 
Case 2: 

– Either v or y contain more than one type of alphabet 
symbols. Two possibilities are shown below. 
 
 
 
 

– In this case the string uv2xy2z may contain equal 
number of the three alphabet symbols but won’t 
contain them in the correct order. Therefore,  

   uv2xy2z ∉ L. 
 

a…a … a b b b… b c … c 
v y/v y 
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CFL is not closed under 
intersection or complement 

• Let Σ = {a, b, c}. Both L and L’ are CFLs 
– L = {w over Σ | w has equal a’s and b’s} 
– L’ = {w over Σ | w has equal b’s and c’s}.  

• L ∩ L’ = {w over Σ | w has equal a’s, b’s and c’s}, 
it is not a CFL. 

• Because of CFLs are closed under Union and 
the DeMorgan’s law, we can see that CFLs are 
not closed under complement either. 
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