Chapter 2: Context-Free Languages

Context Free Languages

• The class of regular language is a subset of the class of context free languages

Context Free Grammar Definition

- A CFG G = (V, Σ , R, S) where $V \cap \Sigma = \emptyset$,
	- V is a finite set of symbols called nonterminals
	- $-\Sigma$ is a finite set of symbols called terminals.
	- R is a finite set of rules, which is a subset of V $X(V \cup \Sigma)^*$.
		- \leq nonterminal symbol \rightarrow a string over terminals and nonterminals.
		- write $A \rightarrow w$ if $(A, w) \in R$.
	- $S \in V$ is the start nonterminal.

A CFG for some sentences

 \leq Sentence $>$ \rightarrow \leq noun $>$ \leq verb $>$ \leq object $>$ \langle <noun> \rightarrow Mike | Jean \langle verb \rangle \rightarrow likes | sees

 \langle object $>$ \rightarrow flowers | zoo

• Example for the grammar to generate the sentence *Jean likes flowers*:

<Sentence> ⇒ <noun><verb><object> ⇒ Jean <verb><object>

 \Rightarrow Jean likes <object> \Rightarrow Jean likes flowers

A CFG for arithmetic expressions

- $E \rightarrow E + E |E \cdot E | (E) | a | b$
- The start nonterminal: E.
- The set of terminals: $\{a, b, +, *, (,) \}$
- The set of nonterminals: ${E}$
- A derivation for generating a+a*b: $E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E \cdot E \Rightarrow a + a \cdot E$ ⇒ a + a*****b

Another grammar for arithmetic expressions

- $E \rightarrow E + T$ | T
- $T \rightarrow T * F \mid F$
- $F \rightarrow (E) | a | b$

A derivation for $a + a * b$:

 $E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow x + T \Rightarrow a + T \cdot F$ \Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow x + a*b

Derivations and the language of the grammar G: L(G)

• One step derivation:

 \triangleright u \Rightarrow v if u = xAy, v = xwy and A \rightarrow w in R

- 0 or more steps derivation: $\geq u \Rightarrow^* v$ if $u \Rightarrow u_1 \Rightarrow ... \Rightarrow u_n = v$ (n ≥ 0)
- $L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$
- A language L is a context-free language if there is a CFG G such that $L(G) = L$.

Example:

- CFG: $S \rightarrow aSb \mid \varepsilon$
- Derivations for generating aabb:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabba = aabb$

• $L(G) = \{a^n b^n \mid n \ge 0 \}$

Parse trees

In general, for a rule $A \rightarrow W_0W_1...W_n$, each node for w_i is placed as a child of the node labeled with A following the order.

Parse trees (cont'd)

- All derivations can be shown with parse trees.
- The order of rule applications may be lost.

E ⇒ E + E ⇒ E + E ***** E ⇒ a + E ***** E ⇒ $a + a \cdot E \Rightarrow a + a \cdot b$

Leftmost and Rightmost Derivations

• A derivation is a leftmost derivation if at every step the leftmost remaining nonterminal is replaced.

– Consider E \Rightarrow E + E \Rightarrow a + E

• A derivation is a rightmost derivation if at every step the leftmost remaining nonterminal is replaced.

 $-$ E \Rightarrow E + E \Rightarrow E + a

Ambiguity

- A string *w* is derived ambiguously in context-free grammar G if it has two or more different leftmost derivations.
- A CFG is ambiguous if it generates some string ambiguously.
- A CFL is inherently ambiguous if it can only be generated by ambiguous grammars.

Ambiguity (cont'd)

- An ambiguous CFG:
	- $-E \rightarrow E + E |E^*E|(E) |a|b$
	- $-$ For string a $+$ a^{*}b, two leftmost derivations:
		- E [⇒] E + E [⇒] a + E [⇒] a + E ***** E [⇒] a + a ***** E [⇒] a + a ***** b

or

- E ⇒ E * E ⇒ E + E ***** E ⇒ a + E ***** E ⇒ a + a ***** E ⇒ a + a ***** b
- An inherently ambiguous CFL: $\{a^n b^m c^m d^n \mid n, m > 0\} \cup \{a^n b^n c^m d^m \mid n, m > 0\}$

Chomsky Normal Form (CNF)

- Every rule in the CFG G is of one of the two forms:
	- 1) $A \rightarrow a$

2) $A \rightarrow BC$, $B \neq S$ and $C \neq S$ (S is the start symbol)

3) Only $S \to \varepsilon$ is allowed if $\varepsilon \in L(G)$.

• All grammars can be converted into CNF

Closure properties of CFLs

- CFLs are closed under:
	- 1) Union
	- 2) Concatenation
	- 3) Star
- CFLs are NOT closed under intersection or complement

Given two CFGs

\n- $$
L_1 = L(G_1)
$$
 where $G_1 = (V_1, \Sigma, R_1, S_1)$
\n- $L_2 = L(G_2)$ where $G_2 = (V_2, \Sigma, R_2, S_2)$
\n

• Without loss of generality, we assume that $V_1 \cap V_2 = \varnothing$

General construction of the CFG for the CFL after union

- Let $G = (V, \Sigma, R, S)$ where
	- $-V = V_1 \cup V_2 \cup \{S\}$, (S is a new start symbol) $-S \notin V_1 \cup V_2$
	- $-R = R_1 \cup R_2 \cup \{ S \rightarrow S_1 | S_2 \}$

Example

- $L_1 = \{ a^n b^n \mid n \ge 0 \}$ $- G_1: S_1 \rightarrow aS_1b \mid \varepsilon$
- $L_2 = \{ b^n a^n \mid n \ge 0 \}$ $- G_2$: S₂ \rightarrow bS₂a | ε
- The grammar for $L_1 \cup L_2$
	- Add a new start symbol S and rules $S \rightarrow S_1 \mid S_2$, so the new grammar is:

$$
S \rightarrow S_1 \mid S_2
$$

\n
$$
S_1 \rightarrow aS_1 b \mid \varepsilon
$$

\n
$$
S_2 \rightarrow bS_2 a \mid \varepsilon
$$

General construction of the CFG for the CFL after concatenation

- Let $G = (V, \Sigma, R, S)$ where
	- $-V = V_1 \cup V_2 \cup \{S\},$
	- $-S \notin V_1 \cup V_2$
	- $-R = R_1 \cup R_2 \cup \{ S \rightarrow S_1S_2 \}$

S is a new start symbol and $S \rightarrow S_1S_2$ is a new rule.

Example

- L₁ = { aⁿbⁿ | n ≥ 0 }, L₂ = { bⁿaⁿ | n ≥ 0 }
- $L_1.L_2 = \{ a^n b^{(n+m)} a^m | n, m \ge 0 \}$
- The CFG for $L_1.L_2$:
	- Add a new start symbol S and rule $S \rightarrow S_1S_2$ so the CFG for $L_1.L_2$ is:

$$
S \to S_1 S_2
$$

\n
$$
S_1 \to a S_1 b \mid \varepsilon
$$

\n
$$
S_2 \to b S_2 a \mid \varepsilon
$$

General construction of the CFG for the CFL after Star

- Let $G = (V, \Sigma, R, S)$ where
	- $-V = V_1 \cup \{ S \},$
	- $-S \notin V_1$
	- $-R = R_1 \cup \{ S \rightarrow SS_1 | \epsilon \}$

Examples

• L₁ = {aⁿbⁿ | n \geq 0}

 $- L_1^* = \{a^{n1}b^{n1} ... a^{nk}b^{nk} \mid k \ge 0 \text{ and } n_i \ge 0 \text{ for all } i\}$

- L₂ = { a^{n^2} | n \geq 1 } $- L_2^* = a^*$
- The CFG for L_1^* :
	- Add a new start symbol S and rules $S \rightarrow SS_1 \mid \varepsilon$.
	- $-$ The CFG for L_1^* is:

$$
S \to SS_1 \mid \epsilon
$$

$$
S_1 \to aS_1 b \mid \epsilon
$$

Push Down Automaton (PDA)

- PDA is a language acceptor model for CFLs.
- Similar to NFA but has an extra component called a stack

PDA (cont'd)

- In one move, a PDA can :
	- change state,
	- read a symbol from the input tape or ignore it,
	- Write a symbol to the top (push) of the stack and the rest in the stack are "push down", or
	- Remove a symbol from the top (pop) of the stack and other symbols in the stack are moved up.

PDA (cont'd)

• If read a, transit from state p to state q, pop x from the stack, and push b into the stack, it is showed as

Definition of PDA

- A PDA is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q0, F)$, where $Q, \Sigma, \Gamma, \delta$, F are finite sets:
	- 1. Q is the set of states
	- 2. Σ is the input alphabet
	- 3. Γ is the stack alphabet
	- 4. δ: $(Q \times \sum_{s} X \Gamma_{s}) \rightarrow (Q \times \Gamma_{s})$
	- 5. $q0 \in \mathbb{Q}$ is the start state, and
	- 6. $F \subset Q$ is the set of accept states

Example of a PDA

• PDA for $L = \{0^n 1^n | n \ge 0\}$

 $FIGURE$ 2.15 State diagram for the PDA M_1 that recognizes $\{0^n1^n | n \geq 0\}$

Initially place a special symbol \$ on the stack and then pop it at the end before acceptance.

This figure is taken from the book *Introduction to Theory of Computation, Michael Sipser,* page 115.

Definition of L(M)

• The language that PDA M accepts:

 $- L(M) = \{ w \in \sum^* \mid M \text{ accepts } w \}$

Example

What is the language of the above PDA?

This figure is taken from the book *Introduction to Theory of Computation, Michael Sipser,* page 116.

Equivalence with CFGs

- For every CFG G there is a PDA M such that $L(G) = L(M)$
- For every PDA M there is a CFG G such that $L(M) = L(G)$

$CFG \rightarrow PDA$

- Given CFG G = (V, Σ, R, S)
	- Let PDA M = $(Q, \Sigma, \Sigma \cup V \cup {\{\$\}, \delta, q_{start}, \{q_{accept}\})$
	- $Q = {q_{start}, q_{loop}, q_{accept}}$ 1. $((q_{start}, \varepsilon, \varepsilon), (q_{loop}, S\$ $)) \in \delta$ 2. For each rule $A \rightarrow w$, $((q_{\text{loop}}, \varepsilon, A), (q_{\text{loop}}, w)) \in \delta$ 3. For each symbol $\sigma \in \Sigma$ $((q_{loop}, σ, σ), (q_{loop}, ε)) \in δ$ 4. ((q_{loop} , ε , $\$\$), (q_{accept} , ε)) $\in \delta$

Example

This figure is taken from the book *Introduction to Theory of Computation, Michael Sipser,* page 120.

$PDA P \rightarrow CFG G$

- First, we simplify our task by modifying P slightly to give it the following three features:
	- 1. It has a single accept state, q_{accept} .
	- 2. It empties its stack before accepting.
	- 3. Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

$PDA P \rightarrow CFG G (cont'd)$

- For $P = \{Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\}\}\$, to construct G:
- The variables of G are $\{A_{pq} | p, q \in Q\}$.
- The start variable is Aq_0q_{qaccept} Type 1: For each p, q, r, $s \in Q$, $u \in \Gamma$, and a, $b \in$ \sum_{ϵ} , if $((p, a, \epsilon), (r, u))$ is in δ and $((s, b, u), (q, \epsilon))$ is in δ , put the rule $A_{pq} \rightarrow aA_{rs}b$ in G.

Type 2: For each p, q, $r \in Q$, put the rule $A_{pq} \rightarrow A_{pr}A_{rq}$ in G.

Type 3: Finally, for each $p \in Q$, put the rule $A_{pp} \rightarrow \varepsilon$ in G.

Example

- Let M be the PDA for $\{a^n b^n \mid n > 0\}$
	- $-M = \{ \{p, q\}, \{a, b\}, \{a\}, \delta, p, \{q\} \}$, where
	- $-\delta = \{((p, a, \varepsilon), (p, a)), ((p, b, a), (q, \varepsilon)), ((q, b,$ a), (q, ε) }

Example (cont'd)

- CFG, $G = (V, \{a, b\}, A_{pq}, R)$, A_{pq} is the start variable $-V = \{A_{\text{op}}, A_{\text{op}}, A_{\text{op}}, A_{\text{op}}\}$.
- R contains the following rules:
	- $-$ Type 1:
		- $A_{pq} \rightarrow aA_{pp}b$
		- $A_{\text{p}q} \rightarrow aA_{\text{p}q}$
	- Type 2:
		- $A_{\text{op}} \rightarrow A_{\text{op}} A_{\text{op}} A_{\text{op}} A_{\text{op}}$ • $A_{pq} \rightarrow A_{pp} A_{pq} | A_{pq} A_{qq}$ • $A_{\text{qp}} \rightarrow A_{\text{qp}} A_{\text{pp}} A_{\text{qq}} A_{\text{qp}}$ • $A_{qq} \rightarrow A_{qp} A_{pq} | A_{qq} A_{qq}$
	- $-$ Type 3:

•
$$
A_{pp} \rightarrow \varepsilon
$$

•
$$
A_{qq} \rightarrow \varepsilon
$$

We can discard all rules containing the variables $A_{\alpha\alpha}$ and A_{α} . And we can also simplify the rules containing A_{op} and get the grammar with just two rules

 $A_{\text{p}q} \rightarrow ab$ and $A_{\text{p}q} \rightarrow aA_{\text{p}q}b$.

Non-context free languages

- Pumping lemma for context-free languages:
	- If *A* is an infinite context-free language, then there is a number p (the pumping length) where, if s is any string in *A* of length at least *p*, then s may be divided into five pieces *s* = *uvxyz* satisfying the conditions:
	- 1. $|vy| > 0$,
	- 2. |*vxy*| <= *p,* and
	- 3. For each *i* ≥ 0, *uvi xyi z* ∈A.

Some non context-free languages

- The following languages are not contextfree.
	- 1. $\{a^n b^n c^n \mid n \ge 0\}$.
	- 2. $\{ww \mid w \in \{a, b\}^*\}$
	- 3. $\{a^{n^2} \mid n \ge 0\}$
	- 4. {w in $\{a, b, c\}$ ^{*} | w has equal a's, b's and c's}.

Prove $L = \{a^n b^n c^n \mid n \ge 0\}$ is not a CFL

- Assume L is a CFL. L is infinite.
- Let $w = a^p b^p c^p$, where p is the pumping length

$$
|wy| = 3p \ge p
$$
\n
$$
|vy| > 0
$$
\n
$$
|vxy| \le p
$$

$$
\underbrace{\mathcal{W}}_{p} = a \dots a b \dots b c \dots c}_{p}
$$

 p

Example (contd.)

Case 1:

– Both *v* and *y* contain only one type of alphabet symbols, such that v does not contain both *a*'s and *b*'s or both *b*'s and *c*'s and the same holds for *y*. Two possibilities are shown below.

$$
a \underbrace{a \cdot \cdot \cdot a \cdot b}_{v} \underbrace{b \cdot \cdot \cdot b}_{y/v} \underbrace{c \cdot \cdot \cdot c}_{y}
$$

– In this case the string *uv2xy2z* cannot contain equal number of *a*'s, *b*'s and *c*'s. Therefore, $uv^2xy^2z \notin L$.

Example (cont'd)

Case 2:

– Either *v* or *y* contain more than one type of alphabet symbols. Two possibilities are shown below.

$$
a... a... a b b b... b c... c
$$

– In this case the string *uv2xy2z* may contain equal number of the three alphabet symbols but won't contain them in the correct order. Therefore, $uv^2xy^2z \notin L$.

CFL is not closed under intersection or complement

• Let $\Sigma = \{a, b, c\}$. Both L and L' are CFLs

 $-L = \{w \text{ over } \Sigma \mid w \text{ has equal } a's \text{ and } b's\}$

 $- L' = \{ w \text{ over } \Sigma \mid w \text{ has equal } b's \text{ and } c's \}.$

- L \cap L' = {w over Σ | w has equal a's, b's and c's}, it is not a CFL.
- Because of CFLs are closed under Union and the DeMorgan's law, we can see that CFLs are not closed under complement either.